五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

An Introduction to Modular Arithmetic

2023-09-27 11:59 作者:第一性原理  | 我要投稿

The best way to introduce modular arithmetic is to think of the face of a clock.


The numbers go from 1 to 12, but when you get to "13 o'clock",?it actually becomes 1 o'clock again

So?

13?becomes?1,?

14?becomes?2,?

and so on.

This can keep going, so when you get to "25?o'clock'', you are actually back round to where?1?o'clock is on the clock face (and also where?13?o'clock was too).

What we are saying is?

"13=1+?some multiple of?12", and?

"38=2+?some multiple of?12",?

or, alternatively, "the remainder when you divide?13?by?12?is?1" and "the remainder when you divide?38?by 12 is 2''. The way we write this mathematically is?

13≡1?mod?12,?

38≡2?mod?12

and so on. This is read as?

"13?is congruent to?1?mod (or modulo)?12" and?

"38?is congruent to?2?mod?12".

Congruence

key words:

mod?u?lar?/?m?dj?l??$??mɑ?d??l?r/?adjective?

con?gru?ent?/?k??ɡru?nt?$??kɑ??-/?adjective

congruence

re?main?der?/r??me?nd??$?-?r/?●○○?noun


An Introduction to Modular Arithmetic的評論 (共 條)

分享到微博請遵守國家法律
清流县| 商水县| 托克托县| 嘉义市| 南开区| 十堰市| 沭阳县| 花垣县| 通海县| 建德市| 台北县| 遂溪县| 城市| 永康市| 涡阳县| 利辛县| 互助| 玉山县| 商河县| 柳林县| 定兴县| 衡南县| 墨竹工卡县| 沙田区| 依兰县| 正安县| 龙胜| 保亭| 朔州市| 东丰县| 嫩江县| 舟山市| 清远市| 芒康县| 理塘县| 益阳市| 梧州市| 屏东县| 都江堰市| 长宁区| 柳林县|