五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

量子場論(六):實(shí)標(biāo)量場的粒子態(tài)

2022-11-12 18:54 作者:我的世界-華汁  | 我要投稿


對于動量%5Cmathbf%20p對應(yīng)的湮滅算符a_%5Cmathbf%20p,假設(shè)真空態(tài)%7C0%5Crangle%0A滿足:

a_%5Cmathbf%20p%7C0%5Crangle%3D0.%5Ctag%7B6.1%7D

歸一化為:

%5Clangle0%7C0%5Crangle%3D1.%5Ctag%7B6.2%7D

把哈密頓算符作用到真空態(tài)上,得到:

%5Chat%20H%7C0%5Crangle%3DE_%7B%5Cmathrm%7Bvac%7D%7D%7C0%5Crangle%5C%20%2C%5C%20E_%7B%5Cmathrm%7Bvac%7D%7D%3D%5Cdelta%5E%7B(3)%7D(%5Cmathbf%200)%5Cint%5Cfrac%7BE_%5Cmathbf%20p%7D2%5Cmathrm%20d%5E3p.%5Ctag%7B6.3%7D

可見,真空態(tài)的能量本征值是零點(diǎn)能E_%7B%5Cmathrm%7Bvac%7D%7D.真空態(tài)是能量最低的態(tài)。把動量算符作用在真空態(tài)上:

%5Chat%7B%5Cmathbf%20p%7D%7C0%5Crangle%3D%5Cmathbf%200%7C0%5Crangle.%5Ctag%7B6.4%7D

因此真空態(tài)不具有動量。

定義動量為%5Cmathbf%20p的單粒子態(tài)為:

%7C%5Cmathbf%20p%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20p%7Da_%5Cmathbf%20p%5E%5Cdagger%7C0%5Crangle.%5Ctag%7B6.5%7D

%5Csqrt%7B2E_%5Cmathbf%20p%7D是歸一化因子。用哈密頓算符作用得到:

%5Chat%20H%7C%5Cmathbf%20p%5Crangle%3D(E_%7B%5Cmathrm%7Bvac%7D%7D%2BE_%5Cmathbf%20p)%7C%5Cmathbf%20p%5Crangle.%5Ctag%7B6.6%7D

用動量算符作用得到:

%5Chat%7B%5Cmathbf%20p%7D%7C%5Cmathbf%20p%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20p%7D%5Chat%7B%5Cmathbf%20p%7Da_%5Cmathbf%20p%5E%5Cdagger%7C0%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20p%7D(%5Cmathbf%200%2B%5Cmathbf%20p)a_%5Cmathbf%20p%5E%5Cdagger%7C0%5Crangle%3D%5Cmathbf%20p%7C%5Cmathbf%20p%5Crangle.%5Ctag%7B6.7%7D

可見,相比于真空態(tài),單粒子態(tài)%7C%5Cmathbf%20p%5Crangle增加了能量E_%5Cmathbf%20p與動量%5Cmathbf%20p,兩者滿足質(zhì)殼條件,因此,該單粒子態(tài)描述一個動量為%5Cmathbf%20p的粒子,實(shí)標(biāo)量場的質(zhì)量m即為該粒子的質(zhì)量。

把湮滅算符作用在上面得到:

a_%5Cmathbf%20p%7C%5Cmathbf%20q%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20q%7Da_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%7C0%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20q%7D%5Ba_%5Cmathbf%20q%5E%5Cdagger%20a_%5Cmathbf%20p%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%5D%7C0%5Crangle%3D%5Csqrt%7B2E_%5Cmathbf%20q%7D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%7C0%5Crangle.%5Ctag%7B6.8%7D

當(dāng)%5Cmathbf%20p%5Cne%5Cmathbf%20q時,沒有可以讓湮滅算符去湮滅的粒子,結(jié)果為零。當(dāng)%5Cmathbf%20p%3D%5Cmathbf%20q時,作用得到真空態(tài)??梢?,湮滅算符a_%5Cmathbf%20p的作用是湮滅掉(減少)一個動量為%5Cmathbf%20p的粒子。

兩個單粒子態(tài)的內(nèi)積為:

%5Clangle%5Cmathbf%20q%7C%5Cmathbf%20p%5Crangle%3D%5Csqrt%7B4E_%5Cmathbf%20qE_%5Cmathbf%20p%7D%5Clangle0%7Ca_%5Cmathbf%20qa_%5Cmathbf%20p%5E%5Cdagger%7C0%5Crangle%3D%5Csqrt%7B4E_%5Cmathbf%20qE_%5Cmathbf%20p%7D%5Clangle0%7C%5Ba_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20q%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%5D%7C0%5Crangle%3D%5Csqrt%7B4E_%5Cmathbf%20qE_%5Cmathbf%20p%7D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%5Clangle0%7C0%5Crangle%3D2E_%5Cmathbf%20p(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q).%5Ctag%7B6.9%7D

這是個洛倫茲不變量。

之前提到過,標(biāo)量場是算符,把標(biāo)量場算符作用在真空態(tài)上得到:

%5Cphi(x)%7C0%5Crangle%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20p%7D%7D(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)%7C0%5Crangle%5Cmathrm%20d%5E3p%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20p%7D%7De%5E%7Bip%5Ccdot%20x%7Da_%5Cmathbf%20p%5E%5Cdagger%20%7C0%5Crangle%5Cmathrm%20d%5E3p.%5Ctag%7B6.10%7D

它與單粒子態(tài)%7C%5Cmathbf%20p%5Crangle的內(nèi)積為:

%5Clangle%5Cmathbf%20p%7C%5Cphi(x)%7C0%5Crangle%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Csqrt%7B%5Cfrac%7BE_%5Cmathbf%20p%7D%7BE_%5Cmathbf%20q%7D%7De%5E%7Bip%5Ccdot%20x%7D%5Clangle0%7Ca_%5Cmathbf%20pa_%5Cmathbf%20q%5E%5Cdagger%20%7C0%5Crangle%5Cmathrm%20d%5E3q%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Csqrt%7B%5Cfrac%7BE_%5Cmathbf%20p%7D%7BE_%5Cmathbf%20q%7D%7De%5E%7Bip%5Ccdot%20x%7D%5Clangle0%7C%5Ba_%5Cmathbf%20p%2Ca_%5Cmathbf%20q%5E%5Cdagger%20%5D%7C0%5Crangle%5Cmathrm%20d%5E3q%3D%5Cint%5Csqrt%7B%5Cfrac%7BE_%5Cmathbf%20p%7D%7BE_%5Cmathbf%20q%7D%7D%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)e%5E%7Bip%5Ccdot%20x%7D%5Clangle0%7C%7C0%5Crangle%5Cmathrm%20d%5E3q%3De%5E%7Bip%5Ccdot%20x%7D.%5Ctag%7B6.11%7D

回顧量子力學(xué),動量本征態(tài)%7C%5Cmathbf%20p%5Crangle與坐標(biāo)本征態(tài)%7C%5Cmathbf%20x%5Crangle的內(nèi)積為:

%5Clangle%5Cmathbf%20p%7C%5Cmathbf%20x%5Crangle%3D%5Cfrac1%7B%5Csqrt%7B(2%5Cpi)%5E3%7D%7De%5E%7Bi%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D.%5Ctag%7B6.12%7D

這兩個內(nèi)積的形式類似。因此%5Cphi(x)%7C0%5Crangle可視為單粒子位置本征態(tài),場算符%5Cphi(%5Cmathbf%20x%2Ct)的作用是在(%5Cmathbf%20x%2Ct)這個時空點(diǎn)處產(chǎn)生一個粒子。

定義動量分別為%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_nn個粒子的多粒子態(tài)為:

%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%5Cequiv%20C_1a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%5C%20%2C%5C%20C_1%3D%5Csqrt%7B2E_%7B%5Cmathbf%20p_1%7D%7D%5Csqrt%7B2E_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6%5Csqrt%7B2E_%7B%5Cmathbf%20p_n%7D%7D.%5Ctag%7B6.13%7D

將哈密頓算符作用于其上,得到:

%5Cbegin%7Balign%7D%5Chat%20H%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%26%3DC_1%5Chat%20Ha_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%3DC_1(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%5Chat%20H%2BE_%7B%5Cmathbf%20p_1%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%5C%5C%26%3DC_1a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20%5Chat%20Ha_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%2BE_%7B%5Cmathbf%20p_1%7D%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%5C%5C%26%3DC_1a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%5Chat%20H%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%2B(E_%7B%5Cmathbf%20p_1%7D%2BE_%7B%5Cmathbf%20p_2%7D)%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%5C%5C%26%3D%E2%80%A6%3DC_1a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%5Chat%20H%7C0%5Crangle%2B(E_%7B%5Cmathbf%20p_1%7D%2BE_%7B%5Cmathbf%20p_2%7D%2B%E2%80%A6%2BE_%7B%5Cmathbf%20p_n%7D)%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%5C%5C%26%3D(E_%7B%5Cmathrm%7Bvac%7D%7D%2BE_%7B%5Cmathbf%20p_1%7D%2BE_%7B%5Cmathbf%20p_2%7D%2B%E2%80%A6%2BE_%7B%5Cmathbf%20p_n%7D)%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle.%5Cend%7Balign%7D%5Ctag%7B6.14%7D

同理,動量算符作用給出:

%5Chat%7B%5Cmathbf%20p%7D%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%3D(%5Cmathbf%20p_1%2B%5Cmathbf%20p_2%2B%E2%80%A6%2B%5Cmathbf%20p_n)%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle.%5Ctag%7B6.15%7D

多粒子態(tài)的能量動量本征值由各粒子疊加貢獻(xiàn)。

由于產(chǎn)生算符相互對易,因此可以得到:

%5Cbegin%7Balign%7D%7C%5Cmathbf%20p_1%2C%E2%80%A6%2C%5Cmathbf%20p_i%2C%E2%80%A6%2C%5Cmathbf%20p_j%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle%26%3D%5Csqrt%7B2E_%7B%5Cmathbf%20p_1%7D%7D%E2%80%A6%5Csqrt%7B2E_%7B%5Cmathbf%20p_n%7D%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_i%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_j%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%5C%5C%26%3D%5Csqrt%7B2E_%7B%5Cmathbf%20p_1%7D%7D%E2%80%A6%5Csqrt%7B2E_%7B%5Cmathbf%20p_n%7D%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_j%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_i%7D%5E%5Cdagger%E2%80%A6a_%7B%5Cmathbf%20p_n%7D%5E%5Cdagger%7C0%5Crangle%5C%5C%26%3D%7C%5Cmathbf%20p_1%2C%E2%80%A6%2C%5Cmathbf%20p_j%2C%E2%80%A6%2C%5Cmathbf%20p_i%2C%E2%80%A6%2C%5Cmathbf%20p_n%5Crangle.%5Cend%7Balign%7D%5Ctag%7B6.16%7D

對調(diào)多粒子態(tài)的任意兩個粒子,得到的態(tài)相同,說明實(shí)標(biāo)量場描述的粒子是玻色子,稱為標(biāo)量玻色子,遵循玻色-愛因斯坦統(tǒng)計。

雙粒子態(tài)的內(nèi)積為:

%5Cbegin%7Balign%7D%5Clangle%5Cmathbf%20q_1%2C%5Cmathbf%20q_2%7C%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%5Crangle%26%3D%5Csqrt%7B16E_%7B%5Cmathbf%20p_1%7DE_%7B%5Cmathbf%20p_2%7DE_%7B%5Cmathbf%20q_1%7DE_%7B%5Cmathbf%20q_2%7D%7D%5Clangle0%7Ca_%7B%5Cmathbf%20q_2%7Da_%7B%5Cmathbf%20q_1%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%7C0%5Crangle%5C%5C%26%3D%5Csqrt%7B16E_%7B%5Cmathbf%20p_1%7DE_%7B%5Cmathbf%20p_2%7DE_%7B%5Cmathbf%20q_1%7DE_%7B%5Cmathbf%20q_2%7D%7D%5B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_1)%5Clangle0%7Ca_%7B%5Cmathbf%20q_2%7Da_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%7C0%5Crangle%2B%5Clangle0%7Ca_%7B%5Cmathbf%20q_2%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20a_%7B%5Cmathbf%20q_1%7Da_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%7C0%5Crangle%5D%5C%5C%26%3D%5Csqrt%7B16E_%7B%5Cmathbf%20p_1%7DE_%7B%5Cmathbf%20p_2%7DE_%7B%5Cmathbf%20q_1%7DE_%7B%5Cmathbf%20q_2%7D%7D%5B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_1)%5Clangle0%7Ca_%7B%5Cmathbf%20q_2%7Da_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger%7C0%5Crangle%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_2-%5Cmathbf%20q_1)%5Clangle0%7Ca_%7B%5Cmathbf%20q_2%7Da_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger%20%7C0%5Crangle%5D%5C%5C%26%3D%5Csqrt%7B16E_%7B%5Cmathbf%20p_1%7DE_%7B%5Cmathbf%20p_2%7DE_%7B%5Cmathbf%20q_1%7DE_%7B%5Cmathbf%20q_2%7D%7D%5B(2%5Cpi)%5E6%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_1)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_2-%5Cmathbf%20q_2)%2B(2%5Cpi)%5E6%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_2-%5Cmathbf%20q_1)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_2)%5D%5C%5C%26%3D4E_%7B%5Cmathbf%20p_1%7DE_%7B%5Cmathbf%20p_2%7D(2%5Cpi)%5E6%5B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_1)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_2-%5Cmathbf%20q_2)%2B%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_2-%5Cmathbf%20q_1)%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p_1-%5Cmathbf%20q_2)%5D.%5Cend%7Balign%7D%5Ctag%7B6.17%7D

定義動量均為%5Cmathbf%20qn個粒子的多粒子態(tài):

%7Cn_%5Cmathbf%20q%5Crangle%5Cequiv%20C_2(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q%7D%7C0%5Crangle%5C%20%2C%5C%20C_2%3D(2E_%5Cmathbf%20q)%5E%7B%5Cfrac%7Bn_%5Cmathbf%20q%7D%7B2%7D%7D.%5Ctag%7B6.18%7D

則粒子數(shù)密度算符%5Chat%20N_%7B%5Cmathbf%20p%7D%3Da_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20p對它的作用為:

%5Cbegin%7Balign%7D%5Chat%20N_%7B%5Cmathbf%20p%7D%7Cn_%5Cmathbf%20q%5Crangle%26%3DC_2a_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20p(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q%7D%7C0%5Crangle%3DC_2a_%5Cmathbf%20p%5E%5Cdagger%5Ba_%5Cmathbf%20q%5E%5Cdagger%20a_%5Cmathbf%20p%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)%5D(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%5C%5C%26%3DC_2a_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20q%5E%5Cdagger%20a_%5Cmathbf%20p(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%2B(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)C_2a_%5Cmathbf%20p%5E%5Cdagger(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%5C%5C%26%3DC_2a_%5Cmathbf%20p%5E%5Cdagger%20(a_%5Cmathbf%20q%5E%5Cdagger%20)%5E2a_%5Cmathbf%20p(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-2%7D%7C0%5Crangle%2B2(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)C_2a_%5Cmathbf%20p%5E%5Cdagger(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%5C%5C%26%3D%E2%80%A6%3DC_2a_%5Cmathbf%20p%5E%5Cdagger%20(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q%7Da_%5Cmathbf%20p%7C0%5Crangle%2Bn_%5Cmathbf%20q(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)C_2a_%5Cmathbf%20p%5E%5Cdagger(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%5C%5C%26%3Dn_%5Cmathbf%20q(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)C_2a_%5Cmathbf%20p%5E%5Cdagger(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle.%5Cend%7Balign%7D%5Ctag%7B6.19%7D

在動量空間對粒子數(shù)密度算符進(jìn)行積分,可得到粒子數(shù)算符:

%5Chat%20N%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7Da_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20p%5Cmathrm%20d%5E3p.%5Ctag%7B6.20%7D

把它作用在動量均為%5Cmathbf%20qn個粒子的多粒子態(tài)上,得到:

%5Chat%20N%7Cn_%5Cmathbf%20q%5Crangle%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7D%5Chat%20N_%7B%5Cmathbf%20p%7D%7Cn_%5Cmathbf%20q%5Crangle%5Cmathrm%20d%5E3p%3D%5Cint%20n_%5Cmathbf%20q%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20q)C_2a_%5Cmathbf%20p%5E%5Cdagger(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q-1%7D%7C0%5Crangle%5Cmathrm%20d%5E3p%3Dn_%5Cmathbf%20qC_2(a_%5Cmathbf%20q%5E%5Cdagger)%5E%7Bn_%5Cmathbf%20q%7D%7C0%5Crangle%3Dn_%5Cmathbf%20q%7Cn_%5Cmathbf%20q%5Crangle.%5Ctag%7B6.21%7D

因此,%7Cn_%5Cmathbf%20q%5Crangle是粒子數(shù)算符的本征態(tài),本征值為粒子數(shù)n_%5Cmathbf%20q.

更一般地,定義動量為%5Cmathbf%20p_1%2C%5Cmathbf%20p_2%2C%E2%80%A6%2C%5Cmathbf%20p_m的粒子分別有n_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D個的多粒子態(tài)為:

%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle%5Cequiv%20C_3(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7D(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%5C%20%2C%5C%20C_3%3D%5Cprod%5Em_%7Bi%3D1%7D(2E_%7B%5Cmathbf%20p_i%7D)%5E%7B%5Cfrac%7Bn_%7B%5Cmathbf%20p_i%7D%7D%7B2%7D%7D.%5Ctag%7B6.22%7D

用粒子數(shù)算符作用于其上,得到:

%5Cbegin%7Balign%7D%5Chat%20N%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle%26%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DC_3a_%5Cmathbf%20p%5E%5Cdagger%20a_%5Cmathbf%20p(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7D(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DC_3%5Ba_%5Cmathbf%20p%5E%5Cdagger%20(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7Da_%5Cmathbf%20p(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%2Bn_%7B%5Cmathbf%20p_1%7D(2%5Cpi)%5E3%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20p-%5Cmathbf%20p_1)a_%5Cmathbf%20p%5E%5Cdagger(a_%7B%5Cmathbf%20p_1%7D)%5E%7Bn_%7B%5Cmathbf%20p_1%7D-1%7D(a_%7B%5Cmathbf%20p_2%7D)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%5D%5Cmathrm%20d%5E3p%5C%5C%26%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DC_3%5Ba_%5Cmathbf%20p%5E%5Cdagger%20(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7Da_%5Cmathbf%20p(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%5D%5Cmathrm%20d%5E3p%2Bn_%7B%5Cmathbf%20p_1%7D%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle%5C%5C%26%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DC_3%5Ba_%5Cmathbf%20p%5E%5Cdagger%20(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7D(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7Da_%5Cmathbf%20p%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7D%7C0%5Crangle%5D%5Cmathrm%20d%5E3p%2B(n_%7B%5Cmathbf%20p_1%7D%2Bn_%7B%5Cmathbf%20p_2%7D)%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle%5C%5C%26%3D%E2%80%A6%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%7DC_3%5Ba_%5Cmathbf%20p%5E%5Cdagger%20(a_%7B%5Cmathbf%20p_1%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_1%7D%7D(a_%7B%5Cmathbf%20p_2%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_2%7D%7D%E2%80%A6(a_%7B%5Cmathbf%20p_m%7D%5E%5Cdagger)%5E%7Bn_%7B%5Cmathbf%20p_m%7D%7Da_%5Cmathbf%20p%7C0%5Crangle%5D%5Cmathrm%20d%5E3p%2B(n_%7B%5Cmathbf%20p_1%7D%2Bn_%7B%5Cmathbf%20p_2%7D%2B%E2%80%A6%2Bn_%7B%5Cmathbf%20p_m%7D)%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle%5C%5C%26%3D(n_%7B%5Cmathbf%20p_1%7D%2Bn_%7B%5Cmathbf%20p_2%7D%2B%E2%80%A6%2Bn_%7B%5Cmathbf%20p_m%7D)%7Cn_%7B%5Cmathbf%20p_1%7D%2Cn_%7B%5Cmathbf%20p_2%7D%2C%E2%80%A6%2Cn_%7B%5Cmathbf%20p_m%7D%5Crangle.%5Cend%7Balign%7D%5Ctag%7B6.23%7D

可見,粒子數(shù)算符確實(shí)可以描述粒子總數(shù)。

量子場論(六):實(shí)標(biāo)量場的粒子態(tài)的評論 (共 條)

分享到微博請遵守國家法律
新源县| 靖远县| 东源县| 正安县| 赞皇县| 哈密市| 固镇县| 隆化县| 顺义区| 巩留县| 马鞍山市| 梓潼县| 祁阳县| 南康市| 亚东县| 巴中市| 通许县| 洪洞县| 云林县| 宁陕县| 河间市| 湖口县| 昌乐县| 望城县| 商丘市| 武隆县| 潜山县| 塔河县| 屯留县| 巴东县| 宜兰市| 五莲县| 措美县| 广丰县| 龙口市| 阿巴嘎旗| 聂荣县| 东台市| 绥中县| 仙桃市| 兴仁县|