經典的比較大小問題!

利用多元函數(shù)的全微分:
z(x,y)=x^y=e^(ylnx);
z(101,99) = (?z/?y)|(x=100,y=100) *△y + (?z/?x)|(x=100,y=100)* △x +z(100,100);
其中,
△y=99-100=-1;
△x=101-100=1;
(?z/?y)|(x=100,y=100)
=lnx*e^(ylnx)|(x=100,y=100)
=100^100*ln100;
(?z/?x)|(x=100,y=100)
=y*x^(y-1)|(x=100,y=100)
=100^100;
(?z/?y)|(x=100,y=100) *△y + (?z/?x)|(x=100,y=100)* △x
=100^100 - 100^100*ln100 <0;
z(100,100)=100^100;
z(101,99) < z(100,100).
標簽: