五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

量子場論(三):實(shí)標(biāo)量場的正則量子化、平面波展開

2022-10-29 01:09 作者:我的世界-華汁  | 我要投稿

若場%5Cphi(x)是一個洛倫茲標(biāo)量,那么它就是標(biāo)量場。在固有保時向洛倫茲變換下,若時空坐標(biāo)的變換為x%5E%5Cprime%3D%5CLambda%20x%2C則標(biāo)量場%5Cphi(x)的變換形式是:

%5Cphi%5E%5Cprime(x%5E%5Cprime)%3D%5Cphi(x).%5Ctag%7B3.1%7D

實(shí)標(biāo)量場滿足自共軛條件:

%5Cphi%5E%5Cdagger(x)%3D%5Cphi(x).%5Ctag%7B3.2%7D

進(jìn)行量子化之后,實(shí)標(biāo)量場%5Cphi(x)是一個厄米算符。

不參與相互作用的自由實(shí)標(biāo)量場的拉格朗日量密度為:

%5Cmathcal%20L%3D%5Cfrac12%5Cpartial%5E%5Cmu%5Cphi%5Cpartial_%5Cmu%5Cphi-%5Cfrac12m%5E2%5Cphi%5E2.%5Ctag%7B3.3%7D

或:

%5Cmathcal%20L%3D%5Cfrac12%5Cdot%5Cphi%5E2-%5Cfrac12(%5Cnabla%5Cphi)%5E2-%5Cfrac12m%5E2%5Cphi%5E2.%5Ctag%7B3.4%7D

其中m%3E0是實(shí)標(biāo)量場的質(zhì)量。拉格朗日量密度的第一項(xiàng)稱為動能項(xiàng),第二項(xiàng)稱為質(zhì)量項(xiàng)。由于:

%5Cfrac12%5Cpartial%5E%5Cmu%5Cphi%5Cpartial_%5Cmu%5Cphi%3D%5Cfrac12%5B(%5Cpartial_0%5Cphi)%5E2-(%5Cpartial_1%5Cphi)%5E2-(%5Cpartial_2%5Cphi)%5E2-(%5Cpartial_3%5Cphi)%5E2%5D.%5Ctag%7B3.5%7D

所以:

%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_0%5Cphi)%7D%3D%5Cpartial_0%5Cphi%3D%5Cpartial%5E0%5Cphi%5C%20%2C%5C%20%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_i%5Cphi)%7D%3D-%5Cpartial_i%5Cphi%3D%5Cpartial%5Ei%5Cphi.%5Ctag%7B3.6%7D

總結(jié)起來就是:

%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_%5Cmu%5Cphi)%7D%3D%5Cpartial%5E%5Cmu%5Cphi%5C%20%2C%5C%20%5Cfrac%7B%5Cpartial%20%5Cmathcal%20L%7D%7B%5Cpartial%5Cphi%7D%3D-m%5E2%5Cphi.%5Ctag%7B3.7%7D

把這些結(jié)果代入到歐拉-拉格朗日方程中去,可得到標(biāo)量場滿足如下的克萊因-高登方程:

(%5Cpartial_%5Cmu%5Cpartial%5E%5Cmu%2Bm%5E2)%5Cphi%3D0.%5Ctag%7B3.8%7D

這個方程還有其他的形式,不過只是寫法上的不同,沒有本質(zhì)區(qū)別:

(%5Cpartial%5E2%2Bm%5E2)%5Cphi%3D0.%5Ctag%7B3.9%7D

(%5Cfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20t%5E2%7D%2Bm%5E2-%5CDelta)%5Cphi%3D0.%5Ctag%7B3.10%7D

(%5Csquare%2Bm%5E2)%5Cphi%3D0.%5Ctag%7B3.11%7D

實(shí)標(biāo)量場%5Cphi(x)對應(yīng)的共軛動量密度為:

%5Cpi(x)%3D%5Cfrac%7B%5Cpartial%5Cmathcal%20L%7D%7B%5Cpartial(%5Cpartial_0%5Cphi)%7D%3D%5Cpartial_0%5Cphi(x)%3D%5Cdot%5Cphi(x).%5Ctag%7B3.12%7D

那么實(shí)標(biāo)量場的哈密頓量密度表示為:

%5Cmathcal%20H%3D%5Cfrac12%5Cpi%5E2%2B%5Cfrac12(%5Cnabla%5Cphi)%5E2%2B%5Cfrac12m%5E2%5Cphi%5E2.%5Ctag%7B3.13%7D

現(xiàn)在,把實(shí)標(biāo)量場與動量密度都看作算符,則等時對易關(guān)系為:

%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%3Di%5Cdelta%5E%7B(3)%7D(%5Cmathbf%20x-%5Cmathbf%20y)%5C%20%2C%5C%20%5B%5Cphi(%5Cmathbf%20x%2Ct)%2C%5Cphi(%5Cmathbf%20y%2Ct)%5D%3D0%5C%20%2C%5C%20%5B%5Cpi(%5Cmathbf%20x%2Ct)%2C%5Cpi(%5Cmathbf%20y%2Ct)%5D%3D0.%5Ctag%7B3.14%7D

這種做法叫正則量子化。

在量子力學(xué)中,單粒子波函數(shù)%5CPsi的平面波解為:

%5CPsi(%5Cmathbf%20x%2Ct)%3De%5E%7B-iEt%2Bi%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D.%5Ctag%7B3.15%7D

由于:

i%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20t%7D%5CPsi%3DEe%5E%7B-iEt%2Bi%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D%3DE%5CPsi%5C%20%2C%5C%20-i%5Cnabla%5CPsi%3D%5Cmathbf%20pe%5E%7B-iEt%2Bi%5Cmathbf%20p%5Ccdot%5Cmathbf%20x%7D%3D%5Cmathbf%20p%5CPsi.%5Ctag%7B3.16%7D

可見,能量與動量算符分別為:

%5Chat%20E%3Di%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20t%7D%5C%20%2C%5C%20%5Chat%7B%5Cmathbf%20p%7D%3D-i%5Cnabla.%5Ctag%7B3.17%7D

組合起來,四維動量算符是:

%5Chat%20p%5E%5Cmu%3Di%5Cpartial%5E%5Cmu.%5Ctag%7B3.18%7D

平面波解可表達(dá)為%5CPsi(x)%3De%5E%7B-ip%5Ccdot%20x%7D%2C則:

i%5Cpartial%5E%5Cmu%5CPsi%3Di%5Cpartial%5E%5Cmu%20e%5E%7B-ip%5Ccdot%20x%7D%3Dp%5E%5Cmu%20e%5E%7B-ip%5Ccdot%20x%7D%3Dp%5E%5Cmu%5CPsi.%5Ctag%7B3.19%7D

也就是說,這個平面波解描述四維動量為p%5E%5Cmu的粒子。

現(xiàn)在在量子場論中討論。設(shè)實(shí)標(biāo)量場具有平面波解:

%5Cvarphi(x)%3De%5E%7B-ik%5Ccdot%20x%7D.%5Ctag%7B3.20%7D

則有:

(%5Cpartial_%5Cmu%5Cpartial%5E%5Cmu%2Bm%5E2)%5Cvarphi%3D-(k%5E2-m%5E2)%5Cvarphi%3D-%5B(k%5E0)%5E2-%7C%5Cmathbf%20k%7C%5E2-m%5E2%5D%5Cvarphi%3D0.%5Ctag%7B3.21%7D

為了滿足這個條件,要求:

k%5E0%3D%5Cpm%20E_%5Cmathbf%20k.%5Ctag%7B3.22%7D

其中:

E_%5Cmathbf%20k%5Cequiv%5Csqrt%7B%7C%5Cmathbf%20k%7C%5E2%2Bm%5E2%7D.%5Ctag%7B3.23%7D

從而,克萊因-高登方程有兩種平面波解,分別是k%5E0%3DE_%5Cmathbf%20k的正能解:

%5Cvarphi%5E%7B(%2B)%7D_%5Cmathbf%20k%3De%5E%7B-i(E_%5Cmathbf%20kt-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D.%5Ctag%7B3.24%7D

k%5E0%3D-E_%5Cmathbf%20k的負(fù)能解

%5Cvarphi%5E%7B(-)%7D_%5Cmathbf%20k%3De%5E%7Bi(E_%5Cmathbf%20kt%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D.%5Ctag%7B3.25%7D

從而,滿足克萊因-高登方程的場算符%5Cphi(%5Cmathbf%20x%2Ct)的一般解為(這里做了傅里葉展開,把場算符展開成無窮多個%5Cmathbf%20k):

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20k%5Cvarphi_%5Cmathbf%20k%5E%7B(%2B)%7D(x)%2B%5Ctilde%20a_%5Cmathbf%20k%5Cvarphi_%5Cmathbf%20k%5E%7B(-)%7D(x)%5D%5Cmathrm%20d%5E3k%5C%5C%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20k%20e%5E%7B-i(E_%5Cmathbf%20k%20t-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2B%5Ctilde%20a_%5Cmathbf%20k%20e%5E%7Bi(E_%5Cmathbf%20k%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k.%5Ctag%7B3.26%7D

其中a_%5Cmathbf%20k%5Ctilde%20a_%5Cmathbf%20k都是只依賴于%5Cmathbf%20k的算符,%5Cfrac1%7B%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D是歸一化因子。

取一下厄米共軛,得到:

%5Cphi%5E%5Cdagger(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20k%5E%5Cdagger%20e%5E%7Bi(E_%5Cmathbf%20k%20t-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2B%5Ctilde%20a_%5Cmathbf%20k%5E%5Cdagger%20e%5E%7B-i(E_%5Cmathbf%20k%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k%5C%5C%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%7B-%5Cmathbf%20k%7D%5E%5Cdagger%20e%5E%7Bi(E_%5Cmathbf%20k%20t%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2B%5Ctilde%20a_%7B-%5Cmathbf%20k%7D%5E%5Cdagger%20e%5E%7B-i(E_%5Cmathbf%20k-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k.%5Ctag%7B3.27%7D

因此,實(shí)標(biāo)量場的自共軛條件,要求:

%5Ctilde%20a_%5Cmathbf%20k%3Da%5E%5Cdagger_%7B-%5Cmathbf%20k%7D.%5Ctag%7B3.28%7D

因而:

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20k%20e%5E%7B-i(E_%5Cmathbf%20k%20t-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2Ba%5E%5Cdagger_%7B-%5Cmathbf%20k%7D%20e%5E%7Bi(E_%5Cmathbf%20k%2B%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k%5C%5C%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20k%7D%7D%5Ba_%5Cmathbf%20k%20e%5E%7B-i(E_%5Cmathbf%20k%20t-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%2Ba%5E%5Cdagger_%7B%5Cmathbf%20k%7D%20e%5E%7Bi(E_%5Cmathbf%20k-%5Cmathbf%20k%5Ccdot%5Cmathbf%20x)%7D%5D%5Cmathrm%20d%5E3k.%5Ctag%7B3.29%7D

%5Cmathbf%20k為粒子的動量%5Cmathbf%20p%2C則有:

%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac1%7B(2%5Cpi)%5E3%5Csqrt%7B2E_%5Cmathbf%20p%7D%7D(a_%5Cmathbf%20p%20e%5E%7B-ip%5Ccdot%20x%7D%2Ba_%5Cmathbf%20p%5E%5Cdagger%20e%5E%7Bip%5Ccdot%20x%7D)%5Cmathrm%20d%5E3p.%5Ctag%7B3.30%7D

其中p%5E0是正的,滿足質(zhì)殼條件:

p%5E2%3Dp_%5Cmu%20p%5E%5Cmu%3Dm%5E2.%5Ctag%7B3.31%7D

p%5E0%5Cequiv%20E_%5Cmathbf%20p%3D%5Csqrt%7B%7C%5Cmathbf%20p%7C%5E2%2Bm%5E2%7D.%5Ctag%7B3.32%7D

a_%5Cmathbf%20p是湮滅算符,對應(yīng)于正能解,a_%5Cmathbf%20p%5E%5Cdagger是產(chǎn)生算符,對應(yīng)于負(fù)能解。

共軛動量密度的平面波展開為:

%5Cpi(%5Cmathbf%20x%2Ct)%3D%5Cpartial_0%5Cphi(%5Cmathbf%20x%2Ct)%3D%5Cint%5Cfrac%7B-i%5Csqrt%7BE_%5Cmathbf%20p%7D%7D%7B%5Csqrt2(2%5Cpi)%5E3%7D(a_%5Cmathbf%20pe%5E%7B-ip%5Ccdot%20x%7D-a%5E%5Cdagger_%5Cmathbf%20pe%5E%7Bip%5Ccdot%20x%7D)%5Cmathrm%20d%5E3p.%5Ctag%7B3.33%7D

量子場論(三):實(shí)標(biāo)量場的正則量子化、平面波展開的評論 (共 條)

分享到微博請遵守國家法律
南开区| 安岳县| 陆河县| 广东省| 万州区| 连州市| 临澧县| 湖北省| 招远市| 灵山县| 监利县| 游戏| 丹凤县| 江孜县| 双流县| 夏邑县| 新宾| 玛多县| 昆明市| 临邑县| 黑河市| 肥东县| 德清县| 安义县| 于都县| 古田县| 吉林省| 昆明市| 霍城县| 丹江口市| 肇州县| 塔河县| 广灵县| 宜章县| 青龙| 民县| 西和县| 苏尼特右旗| 湛江市| 新和县| 民权县|