五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Reed-Muller 碼--第四種構(gòu)造方法-多重線性多項(xiàng)式

2023-02-14 08:40 作者:樂(lè)吧的數(shù)學(xué)  | 我要投稿

這篇文章介紹 Reed-Muller 碼的第四種構(gòu)造方法,通過(guò)多重線性多項(xiàng)式來(lái)計(jì)算輸出的比特(符號(hào))。

錄制的視頻在:https://www.bilibili.com/video/BV1LM411P7dc/

?Reed-Muller 碼是記為 R(r,m),則這個(gè)方法為:

1. 先構(gòu)造一個(gè)生成多項(xiàng)式
2. 把多項(xiàng)式中的變量,代入所有的組合,得到的結(jié)果排成向量,就是輸出的結(jié)果。

下面我們?cè)敿?xì)來(lái)說(shuō)明一下:

R(r,m)在輸入的序列為 C 的情況下,對(duì)應(yīng)的生成多項(xiàng)式為:


P_c(x_1%2Cx_2%2C%5Ccdots%2Cx_m)%20%3D%20%5Csum_%7B%20%5Cmatrix%7Bs%5Cin%20%5C%7B1%2C%5Ccdots%2Cm%5C%7D%20%20%5C%5C%20%7Cs%7C%20%5Cle%20r%7D%20%20%7D%0AC_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%20%5Ctag%201


其中 C 是一個(gè)長(zhǎng)度為 k? 的序列,即輸入序列的長(zhǎng)度,在前面文章中多次提到:
k%20%3D%20%5Csum_%7Bi%3D0%7D%5Er%20C_m%5Ei%20%3D%20C_m%5E0%20%2B%20C_m%5E1%2B%5Ccdots%20%2BC_m%5Er%20%3D%201%20%2B%20m%20%2B%20C_m%5E2%2B%5Ccdots%20%2BC_m%5Er%20%20%20%5Ctag%202

需要詳細(xì)解釋一下公式 (1) 中?C_s 的含義:

s 是集合%5C%7B1%2C%5Ccdots%2Cm%5C%7D 的子集,且滿足 s 中含有的元素的數(shù)量不超過(guò) r.

例如 m=3,則 s 有如下情況:

%5C%7B%5C%7D%20%20%5C%5C%0A%5C%7B1%5C%7D%20%20%5C%5C%0A%5C%7B2%5C%7D%20%20%5C%5C%0A%5C%7B3%5C%7D%20%20%5C%5C%0A%5C%7B1%2C2%5C%7D%20%20%5C%5C%0A%5C%7B1%2C3%5C%7D%20%20%5C%5C%0A%5C%7B2%2C3%5C%7D%20%20%5Ctag%203

把公式 (3)? 中的 7個(gè)集合,編個(gè)序號(hào),從 0 開(kāi)始依次分配序號(hào):0,1,2,3,4,5,6,則用這個(gè)序號(hào)的在序列 C 中找對(duì)應(yīng)的位,就是 C_s


下面我們用 R(2,4) 為例子進(jìn)行說(shuō)明公式 (1),假如輸入的序列為? C=1? 1010? 010101? 總共 11 個(gè)比特。

則 s 有如下情況:

%5C%7B%5C%7D%20%20%5C%5C%0A%5C%7B1%5C%7D%20%20%5C%5C%0A%5C%7B2%5C%7D%20%20%5C%5C%0A%5C%7B3%5C%7D%20%20%5C%5C%0A%5C%7B4%5C%7D%20%20%5C%5C%0A%5C%7B1%2C2%5C%7D%20%20%5C%5C%0A%5C%7B1%2C3%5C%7D%20%20%5C%5C%0A%5C%7B1%2C4%5C%7D%20%20%5C%5C%0A%5C%7B2%2C3%5C%7D%20%20%5C%5C%0A%5C%7B2%2C4%5C%7D%20%20%5C%5C%0A%5C%7B3%2C4%5C%7D%20%20%0A%5Ctag%204


對(duì)公式 (4) 從上到下依次給連續(xù)的序號(hào),從 0 開(kāi)始,則:

%0A%5C%7B%5C%7D%20%20%3A%200%20%20%5C%5C%0A%5C%7B1%5C%7D%20%3A%201%20%5C%5C%0A%5C%7B2%5C%7D%20%3A%202%20%5C%5C%0A%5C%7B3%5C%7D%20%3A%203%20%20%5C%5C%0A%5C%7B4%5C%7D%20%20%3A%204%20%5C%5C%0A%5C%7B1%2C2%5C%7D%20%3A%205%20%5C%5C%0A%5C%7B1%2C3%5C%7D%20%3A%206%20%5C%5C%0A%5C%7B1%2C4%5C%7D%20%3A%207%20%5C%5C%0A%5C%7B2%2C3%5C%7D%20%3A%208%20%5C%5C%0A%5C%7B2%2C4%5C%7D%20%3A%209%20%5C%5C%0A%5C%7B3%2C4%5C%7D%20%3A%2010%20%20%0A%5Ctag%205


當(dāng)?s%20%3D%20%5C%7B%5C%7D%3A0? 時(shí):

C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_0%20%5Ctag%206
當(dāng)? s%20%3D%20%5C%7B1%5C%7D%3A1? 時(shí):
C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_1%20x_1%20%5Ctag%207當(dāng) %20s%20%3D%20%5C%7B2%5C%7D%3A2? 時(shí):
C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_2%20x_2%20%5Ctag%208當(dāng) s%20%3D%20%5C%7B3%5C%7D%3A3 時(shí):
C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_3%20x_3%20%5Ctag%209當(dāng) s%20%3D%20%5C%7B4%5C%7D%3A4? 時(shí):
C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_4%20x_4%20%5Ctag%20%7B10%7D當(dāng) s%20%3D%20%5C%7B1%2C2%5C%7D%3A5 時(shí):
C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_5%20x_1%20x_2%20%5Ctag%20%7B11%7D當(dāng) s%20%3D%20%5C%7B1%2C3%5C%7D%3A6? 時(shí):
C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_6%20x_1%20x_3%20%5Ctag%20%7B12%7D
當(dāng) s%20%3D%20%5C%7B1%2C4%5C%7D%3A7? 時(shí):
C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_7%20x_1%20x_4%20%5Ctag%20%7B13%7D
當(dāng) s%20%3D%20%5C%7B2%2C3%5C%7D%3A8? 時(shí):
C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_8%20x_2%20x_3%20%5Ctag%20%7B14%7D
當(dāng) s%20%3D%20%5C%7B2%2C4%5C%7D%3A9? 時(shí):
C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_9%20x_2%20x_4%20%5Ctag%20%7B15%7D
當(dāng) s%20%3D%20%5C%7B3%2C4%5C%7D%3A10時(shí):
C_s%20%5Cprod_%7Bi%20%5Cin%20s%7D%20x_i%20%3DC_%7B10%7D%20x_3%20x_4%20%5Ctag%20%7B16%7D
把公式 (6) 到 (16)? 求和,就是公式 (1) 的結(jié)果:


P_c(x_1%2Cx_2%2Cx_3%2Cx_4)%20%3D%0AC_0%2B%0A(C_1%20x_1%20%2BC_2%20x_2%2BC_3%20x_3%20%2B%20C_4%20x_4)%20%2B%0A(C_5%20x_1%20x_2%2BC_6%20x_1%20x_3%2BC_7%20x_1%20x_4%2BC_8%20x_2%20x_3%2BC_9%20x_2%20x_4%2BC_%7B10%7D%20x_3%20x_4)%20%5Ctag%20%7B17%7D

把 C=1? 1010? 010101 代入 (17) 有:
P_c(x_1%2Cx_2%2Cx_3%2Cx_4)%20%3D%0A1%2B%0A(x_1%20%2Bx_3)%20%2B%0A(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%5Ctag%20%7B18%7D

然后把 x_1%2Cx_2%2Cx_3%2Cx_4 取遍所有的值,通過(guò) (18) 計(jì)算出來(lái) 16? 個(gè)結(jié)果,就是編碼后的結(jié)果:

P_c(0%2C0%2C0%2C0)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(0%2B0)%2B(0%5Ctimes0%2B0%5Ctimes0%2B0%5Ctimes0)%3D1%20%20%5C%5C%0AP_c(0%2C0%2C0%2C1)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(0%2B0)%2B(0%5Ctimes0%2B0%5Ctimes0%2B0%5Ctimes1)%3D1%20%20%5C%5C%0AP_c(0%2C0%2C1%2C0)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(0%2B1)%2B(0%5Ctimes1%2B0%5Ctimes1%2B1%5Ctimes0)%3D0%20%20%5C%5C%0AP_c(0%2C0%2C1%2C1)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(0%2B1)%2B(0%5Ctimes1%2B0%5Ctimes1%2B1%5Ctimes1)%3D1%20%20%5C%5C%0A%5C%5C%0AP_c(0%2C1%2C0%2C0)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(0%2B0)%2B(0%5Ctimes0%2B1%5Ctimes0%2B0%5Ctimes0)%3D1%20%20%5C%5C%0AP_c(0%2C1%2C0%2C1)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(0%2B0)%2B(0%5Ctimes0%2B1%5Ctimes0%2B0%5Ctimes1)%3D1%20%20%5C%5C%0AP_c(0%2C1%2C1%2C0)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(0%2B1)%2B(0%5Ctimes1%2B1%5Ctimes1%2B1%5Ctimes0)%3D1%20%20%5C%5C%0AP_c(0%2C1%2C1%2C1)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(0%2B1)%2B(0%5Ctimes1%2B1%5Ctimes1%2B1%5Ctimes1)%3D0%20%20%5C%5C%0A%5C%5C%0AP_c(1%2C0%2C0%2C0)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(1%2B0)%2B(1%5Ctimes0%2B0%5Ctimes0%2B0%5Ctimes0)%3D0%20%20%5C%5C%0AP_c(1%2C0%2C0%2C1)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(1%2B0)%2B(1%5Ctimes0%2B0%5Ctimes0%2B0%5Ctimes1)%3D0%20%20%5C%5C%0AP_c(1%2C0%2C1%2C0)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(1%2B1)%2B(1%5Ctimes1%2B0%5Ctimes1%2B1%5Ctimes0)%3D0%20%20%5C%5C%0AP_c(1%2C0%2C1%2C1)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(1%2B1)%2B(1%5Ctimes1%2B0%5Ctimes1%2B1%5Ctimes1)%3D1%20%20%5C%5C%0A%5C%5C%0AP_c(1%2C1%2C0%2C0)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(1%2B0)%2B(1%5Ctimes0%2B1%5Ctimes0%2B0%5Ctimes0)%3D0%20%20%5C%5C%0AP_c(1%2C1%2C0%2C1)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(1%2B0)%2B(1%5Ctimes0%2B1%5Ctimes0%2B0%5Ctimes1)%3D0%20%20%5C%5C%0AP_c(1%2C1%2C1%2C0)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(1%2B1)%2B(1%5Ctimes1%2B1%5Ctimes1%2B1%5Ctimes0)%3D1%20%20%5C%5C%0AP_c(1%2C1%2C1%2C1)%20%3D%201%2B%20(x_1%20%2Bx_3)%20%2B%20(x_1%20x_3%2Bx_2%20x_3%2Bx_3%20x_4)%20%3D%201%20%2B(1%2B1)%2B(1%5Ctimes1%2B1%5Ctimes1%2B1%5Ctimes1)%3D0%20%20%5C%5C%0A

所以輸出的序列為? 1101? 1110? 0001? 0010.


Reed-Muller 碼--第四種構(gòu)造方法-多重線性多項(xiàng)式的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
霍山县| 通城县| 孝义市| 鲁甸县| 泸西县| 呼和浩特市| 临颍县| 宜川县| 古交市| 平和县| 清河县| 开鲁县| 福安市| 安新县| 嫩江县| 尉犁县| 山东| 阳曲县| 潢川县| 阳春市| 施秉县| 尼勒克县| 曲阳县| 敦化市| 乌拉特后旗| 新营市| 泽普县| 扎囊县| 涟源市| 施秉县| 工布江达县| 加查县| 湖南省| 祁门县| 四川省| 漳浦县| 连江县| 北海市| 朝阳市| 贵定县| 金山区|