五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

通過定義證明下凸函數(shù)的積分不等式

2023-05-27 17:03 作者:~Sakuno醬  | 我要投稿

已知f(x)%5Ba%2Cb%5D上的下凸函數(shù), 即對(duì)任意的x_1%2Cx_2%20%5Cin%20%5Ba%2Cb%5D%20有?f(%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D)%20%5Cle%20%5Cfrac%7Bf(x_1)%2Bf(x_2)%7D%7B2%7D%20

證明1:

(b-a)f(%5Cfrac%7Ba%2Bb%7D%7B2%7D)%20%5Cle%20%5Cint_%7Ba%7D%5E%7Bb%7D%7Bf(x)%7D%5Ctext%7Bd%7Dx

網(wǎng)上的證明通常是通過泰勒公式證明的 我這里嘗試通過積分的定義證明

首先用極限表示定積分

%5Cint_%7Ba%7D%5E%7Bb%7D%7Bf(x)%7D%5Ctext%7Bd%7Dx%20%3D%5Cint_%7Ba%7D%5E%7Bb%7D%7Bf(x)%7D%5Ctext%7Bd%7Dx%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20f(a%2B%5Cfrac%7Bb-a%7D%7Bn%7D%5Ccdot%20i)

在這篇文章中我證明了通過中值定義的下凸函數(shù)可以推廣到更一般的形式,這里直接試使用結(jié)論了?https://www.bilibili.com/read/cv23934919

把?%5Cfrac%7Bi%7D%7Bn%7D看成?t?使用不等式?f(a%2Bt(b-a))%20%5Cle%20f(a)%2Bt(f(b)-f(a))

%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20f(a%2B%5Cfrac%7Bb-a%7D%7Bn%7D%5Ccdot%20i)%20%5Cle%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20f(a)%2B%20%5Cfrac%7Bi%7D%7Bn%7D%20%5Ccdot%20(f(b)-f(a))

%5Cle%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%20f(a)%5Ccdot%20n%2B%20%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cfrac%7Bi%7D%7Bn%7D%20%5Ccdot%20(f(b)-f(a))

套用求和公式

%5Cle%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D(b-a)%20%5Ccdot%20f(a)%2B%20%5Cfrac%7Bb-a%7D%7Bn%5E2%7D%20%5Ccdot%20(%5Cfrac%7Bn(n%2B1)%7D%7B2%7D)%20%5Ccdot%20(f(b)-f(a))

%5Cle%20(b-a)%20%5Ccdot%20f(a)%2B%20(%5Cfrac%7Bb-a%7D%7B2%7D)%20%5Ccdot%20(f(b)-f(a))

%5Cle%20(b-a)%20%5Cfrac%7Bf(a)%2Bf(b)%7D%7B2%7D


另一個(gè)不等式也是同理

證明2:

%5Cint_%7Ba%7D%5E%7Bb%7D%7Bf(x)%7D%5Ctext%7Bd%7Dx%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7Bn%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20f(a%2B%5Cfrac%7Bb-a%7D%7Bn%7D%5Ccdot%20i)

這里把n變成2n然后首尾相加湊不等式

%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7B2n%7D%5Csum_%7Bi%3D1%7D%5E%7B2n%7D%20f(a%2B%5Cfrac%7Bb-a%7D%7B2n%7D%5Ccdot%20i)%20%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7B2n%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20f(a%2B%5Cfrac%7Bb-a%7D%7B2n%7D%5Ccdot%20i)%20%2B%20f(a%2B%5Cfrac%7Bb-a%7D%7B2n%7D(2n%2B1-i))

運(yùn)用f(%5Cfrac%7Ba%2Bb%7D%7B2%7D)%20%5Cle%20%5Cfrac%7Bf(a)%2Bf(b)%7D%7B2%7D%20 把?i 消掉

%20%5Cge%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7B2n%7D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%202f(a%2B%5Cfrac%7Bb-a%7D%7B4n%7D(2n%2B1))

%20%5Cge%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bb-a%7D%7B2n%7D%202nf(2a%2B%5Cfrac%7Bb-a%7D%7B2n%7D(2n%2B1))

%20%5Cge%20(b-a)f(%5Cfrac%7Ba%2Bb%7D%7B2%7D)

通過定義證明下凸函數(shù)的積分不等式的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
闸北区| 汉阴县| 元谋县| 遂昌县| 定西市| 桑植县| 临沧市| 远安县| 阳高县| 郎溪县| 绥棱县| 邵武市| 舒兰市| 昌都县| 桐庐县| 镇安县| 香港| 日土县| 台南县| 县级市| 马边| 枣阳市| 藁城市| 象山县| 体育| 固阳县| 萝北县| 长沙县| 陆良县| 扬州市| 独山县| 逊克县| 错那县| 彰化县| 二手房| 苗栗市| 山丹县| 博客| 湘阴县| 双辽市| 嘉荫县|