五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

余弦函數(shù)n倍角的那些高級(jí)公式

2022-11-27 14:16 作者:fangquping  | 我要投稿

? ? 對(duì)于三角函數(shù)的n倍角的公式,高中生一般都學(xué)過,太俗的今天就不談了,和大家探討下那些很少見的余弦n倍角公式

? ? 首先要說一下棣莫弗公式,即

%5Ccos%20nx%3D%5Ccos%5Enx-C_n%5E2%5Ccos%5E%7Bn-2%7Dx%20%5Csin%5E2%20x%2BC_n%5E4%5Ccos%5E%7Bn-4%7Dx%5Csin%5E4%20x-%5Ccdots

這個(gè)比較重要,今天的公式大多由它推導(dǎo)而得,這個(gè)公式是怎么來的呢?要借助歐拉公式

e%5E%7Bix%7D%3D%5Ccos%20x%2Bi%5Csin%20x

e%5E%7Binx%7D%3D(%5Ccos%20x%2Bi%5Csin%20x)%5En%3D%5Ccos%7Bnx%7D%2Bi%5Csin%20%7Bnx%7D

中間部分展開,得

%5Ccos%20x%2BiC_n%5E1%5Ccos%5E%7Bn-1%7D%20x%5Csin%20x-C_n%5E2%5Ccos%5E%7Bn-2%7D%20x%5Csin%5E2%20x-%5Ccdots

采用求和符號(hào),我們得到如下等式

%5Csum_%7Bk%3D0%7D%5Eni%5E%7Bk%7DC_n%5Ek%5Ccos%5E%7Bn-k%7Dx%20%5Csin%20%5Ekx%20%3D%5Ccos%7Bnx%7D%2Bi%5Csin%7Bnx%7D

由于i是虛數(shù)單位,根據(jù)它的周期關(guān)系,有

%5Csum_%7B%5Cfrac%7Bn%7D%7B2%7D%5Cge%20k%5Cge%200%7D(-1)%5E%7Bk%7DC_n%5E%7B2k%7D%5Ccos%5E%7Bn-2k%7Dx%20%5Csin%20%5E%7B2k%7Dx%20%2B

i%20%5Csum_%7B%5Cfrac%7Bn-1%7D%7B2%7D%5Cge%20k%5Cge%200%7D(-1)%5E%7Bk%7DC_n%5E%7B2k%2B1%7D%5Ccos%5E%7Bn-2k-1%7Dx%20%5Csin%20%5E%7B2k%2B1%7Dx

%3D%5Ccos%7Bnx%7D%2Bi%5Csin%7Bnx%7D

比較實(shí)部能得到前面的棣莫弗公式,這里就不詳述了。

下面推導(dǎo)一些高能公式

當(dāng)n為奇數(shù)時(shí)

%5Ccos%20%7Bnx%7D%3D%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkC_n%5E%7B2k%7D%5Ccos%20%5E%7Bn-2k%7Dx%5Csin%5E%7B2k%7Dx

%3D%5Ccos%20x%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkC_n%5E%7B2k%7D(1-%5Csin%5E2%20x)%20%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D-k%7D%5Csin%5E%7B2k%7Dx

除了前面有公因式cos?x,后面可化成關(guān)于sin2x的式子,這樣得出余弦n倍角的式子,

為了計(jì)算正弦系數(shù),再引入系數(shù)數(shù)列R,設(shè)

%5Ccos%20nx%3D%5Ccos%20x%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%7Dx

對(duì)比余弦n倍角的式子,可知

R_0%3D1

R_1%3D%5Cfrac%7Bn%5E2-1%7D%7B2%7D

兩邊求導(dǎo),得

-n%5Csin%20nx%3D-%5Csin%20x-%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%2B1%7Dx%2B

2(1-%5Csin%20%5E2x)%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_kk%5Csin%5E%7B2k-1%7Dx

%3D-%5Csin%20x-%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%2B1%7Dx-

2%5Csum_%7Bk%3D0%7D%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D-1%7D(-1)%5E%7Bk%7DR_%7Bk%2B1%7D(k%2B1)%5Csin%5E%7B2k%2B1%7Dx%20-2%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_kk%5Csin%5E%7B2k%2B1%7Dx

%3D-%5Csin%20x-%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5Ek%5Cleft%20%5B(2k%2B1)R_k%2B2R_%7Bk%2B1%7D(k%2B1)%5Cright%20%5D%5Csin%5E%7B2k%2B1%7Dx

%2B(-1)%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D%7D(n%2B1)R_%7B%5Cfrac%7Bn%2B1%7D2%7D%5Csin%5E%7Bn%7Dx%20-(n%5E2-1)%5Csin%20x

%3D(-1)%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D%7D(n%2B1)R_%7B%5Cfrac%7Bn%2B1%7D2%7D%5Csin%5E%7Bn%7Dx%20-

%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5Ek%5Cleft%20%5B(2k%2B1)R_k%2B2R_%7Bk%2B1%7D(k%2B1)%5Cright%20%5D%5Csin%5E%7B2k%2B1%7Dx

為了得到遞推關(guān)系,兩邊再求導(dǎo)得

-n%5E2%5Ccos%20nx%3D(-1)%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D%7Dn(n%2B1)R_%7B%5Cfrac%7Bn%2B1%7D2%7D%5Csin%5E%7Bn-1%7Dx%20%5Ccos%20x-

%5Csum_%7Bk%3D0%7D%5E%7B%5Cfrac%7Bn-1%7D%7B2%7D%7D(-1)%5Ek(2k%2B1)%5Cleft%20%5B(2k%2B1)R_k%2B2R_%7Bk%2B1%7D(k%2B1)%5Cright%20%5D%5Csin%5E%7B2k%7Dx%5Ccos%20x

對(duì)比原式可知

-n%5E2(-1)%5EkR_k%3D-(-1)%5Ek(2k%2B1)%5Cleft%20%5B(2k%2B1)R_k%2B2R_%7Bk%2B1%7D(k%2B1)%5Cright%20%5D

n%5E2R_k%3D(2k%2B1)%5E2R_k%2B(2k%2B1)(2k%2B2)R_%7Bk%2B1%7D

R_%7Bk%2B1%7D%3D%5Cfrac%7Bn%5E2-(2k%2B1)%5E2%7D%7B(2k%2B1)(2k%2B2)%7DR_%7Bk%7D

R_0%3D1

R_1%3D%5Cfrac%7Bn%5E2-1%7D%7B%202%7D

R_2%3D%5Cfrac%7B(n%5E2-1)(n%5E2-3%5E2)%7D%7B4!%7D

R_3%3D%5Cfrac%7B(n%5E2-1)(n%5E2-3%5E2)(n%5E2-5%5E2)%7D%7B6!%7D

%5Ccdots

R_k%3D%5Cfrac%7B(n%5E2-1)(n%5E2-3%5E2)%5Ccdots%20%5Bn%5E2-(2k-1)%5E2%5D%7D%7B(2k)!%7D

經(jīng)檢驗(yàn)可知,當(dāng)n為奇數(shù)時(shí),有以下關(guān)系

%5Ccos%20nx%3D%5Ccos%20x%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn-1%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%7D%20x

其中

R_k%3D%5Cfrac%7B(n%5E2-1)(n%5E2-3%5E2)%5Ccdots%20%5Bn%5E2-(2k-1)%5E2%5D%7D%7B(2k)!%7D

R_0%3D1

同理,當(dāng)n為偶數(shù)時(shí),有

%5Ccos%20nx%3D%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5EkC_n%5E%7B2k%7D%5Ccos%20%5E%7Bn-2k%7Dx%5Csin%20%5E%7B2k%7Dx

%3D%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5EkC_n%5E%7B2k%7D(1-%5Csin%5E2%20x)%5E%7B%5Cfrac%7Bn%7D%7B2%7D-k%7D%5Csin%20%5E%7B2k%7Dx

引入數(shù)列R,使下列等式成立

%5Ccos%20nx%3D%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%7D%20x

同理可知

R_0%3D1

R_1%3D%5Cfrac%7Bn%5E2%7D%7B2%7D

求二階導(dǎo)得

-n%5Ccos%5E2x

%3D%20%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5Ek2k(2k-1)R_k%5Csin%20%5E%7B2k-2%7Dx%5Ccos%5E2x

-%5Csum_%7Bk%3D1%7D%5E%7B%5Cfrac%7Bn%7D%7B2%7D%7D(-1)%5Ek2kR_k%5Csin%5E%7B2k%7Dx

%3D%5Csum_%7Bk%3D1%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5Ek2k(2k-1)R_k%5Csin%20%5E%7B2k-2%7Dx

-%5Csum_%7Bk%3D1%7D%5E%7B%5Cfrac%7Bn%7D%7B2%7D%7D(-1)%5Ek4k%5E2R_k%5Csin%5E%7B2k%7Dx

%3D-%5Csum_%7Bk%3D0%7D%5E%7B%5Cfrac%7Bn%7D%7B2%7D-1%7D(-1)%5Ek(2k%2B2)(2k%2B1)R_%7Bk%2B1%7D%5Csin%20%5E%7B2k%7Dx

-%5Csum_%7Bk%3D1%7D%5E%7B%5Cfrac%7Bn%7D%7B2%7D%7D(-1)%5Ek4k%5E2R_k%5Csin%5E%7B2k%7Dx

%3D(-1)%5E%5Cfrac%7Bn%7D%7B2%7D(n%2B2)(n%2B1)R_%7B%5Cfrac%7Bn%7D%7B2%7D%2B1%7D%5Csin%5Enx-

%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5Ek%5Cleft%20%5B(2k%2B2)(2k%2B1)R_%7Bk%2B1%7D%2B4k%5E2R_k%5Cright%20%5D%5Csin%5E%7B2k%7Dx

比較原式可知

-n%5E2(-1)%5EkR_k%3D-(-1)%5Ek%5Cleft%20%5B(2k%2B2)(2k%2B1)R_%7Bk%2B1%7D%2B4k%5E2R_k%5Cright%20%5D

(n%5E2-4k%5E2)R_k%3D(2k%2B2)(2k%2B1)R_%7Bk%2B1%7D

R_%7Bk%2B1%7D%3D%5Cfrac%7Bn%5E2-4k%5E2%7D%7B(2k%2B2)(2k%2B1)%7DR_k

R_0%3D1

R_1%3D%5Cfrac%7Bn%5E2%7D%7B2%7D

R_2%3D%5Cfrac%7Bn%5E2(n%5E2-2%5E2)%7D%7B4!%7D

R_3%3D%5Cfrac%7Bn%5E2(n%5E2-2%5E2)(n%5E2-4%5E2)%7D%7B6!%7D

%5Ccdots

R_k%3D%5Cfrac%7Bn%5E2(n%5E2-2%5E2)%5Ccdots%20%5Bn%5E2-(2k-2)%5E2%5D%7D%7B(2k)!%7D

經(jīng)檢驗(yàn)可知當(dāng)n為偶數(shù)時(shí),有以下關(guān)系

%5Ccos%20nx%3D%5Csum_%7Bk%3D0%7D%5E%5Cfrac%7Bn%7D%7B2%7D(-1)%5EkR_k%5Csin%5E%7B2k%7D%20x

其中

R_k%3D%5Cfrac%7Bn%5E2(n%5E2-2%5E2)(n%5E2-4%5E2)%5Ccdots%20%5Bn%5E2-(2k-2)%5E2%5D%7D%7B(2k)!%7D

R_0%3D1

? ? 這樣就證明出余弦n倍角的兩個(gè)n倍角公式,很冷門吧,只要有耐心、夠執(zhí)著,什么樣的公式都能見得到。

? ? 根據(jù)這些思路,你能不能結(jié)合n為奇數(shù)和偶數(shù)的情況,寫出任意整數(shù)n的余弦倍角通用公式呢?如果你是老朋友,會(huì)看過相關(guān)的視頻,下面是證明過程,方法類似,就不贅述了,歡迎支持!






余弦函數(shù)n倍角的那些高級(jí)公式的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
贡嘎县| 兴业县| 沙洋县| 山东省| 三穗县| 绥江县| 江津市| 合川市| 汤原县| 伊春市| 奉化市| 大埔区| 江陵县| 夏津县| 平阴县| 鄂托克前旗| 牟定县| 闻喜县| 宁德市| 盐城市| 通山县| 芮城县| 鄂州市| 谷城县| 买车| 平泉县| 镇宁| 承德市| 富宁县| 兴安县| 泸西县| 花莲县| 龙门县| 广平县| 广德县| 云南省| 西平县| 龙井市| 敦化市| 景宁| 鄂尔多斯市|