五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

極化碼數(shù)學(xué)原理(三)-鞅過程 Martingale

2023-07-17 01:21 作者:樂吧的數(shù)學(xué)  | 我要投稿

(錄制的視頻在:https://www.bilibili.com/video/BV1e14y1979X/)

隨機(jī)過程:

X%20%3D%20%5C%7BX_1%2CX_2%2C%5Ccdots%2CX_N%5C%7D%20%5Ctag%201

隨機(jī)過程研究的是不同時間點的隨機(jī)變量之間的關(guān)系,下面三個例子的隨機(jī)過程體現(xiàn)了隨機(jī)變量之間的不同的關(guān)系:


(1)? X(t) = t ,? 以概率 1



(2)? ? (X(t) = t , for all t ), 依概率 1/2

? ? ? ? (X(t) = -t , for all t ), 依概率 1/2?



(3)? for each t

X(t)%3D%0A%0A%5Cbegin%7Bcases%7D%0A%0A%20%20t%20%26%20with%20%5Cquad%20probability%5Cquad%201%2F2%20%5C%5C%20%5C%5C%0A%0A%20%20-t%26%20with%20%5Cquad%20probability%5Cquad%201%2F2%0A%0A%5Cend%7Bcases%7D






另外一種隨機(jī)過程是馬爾科夫隨機(jī)過程, n+1 時刻的概率特性只由 n 時刻的狀態(tài)決定,而與 n 時刻之前的狀態(tài)無關(guān)。

X_%7Bn%2B1%7D%7CX_n%2CX_%7Bn-1%7D%2C%5Ccdots%20%2CX_0%20-----%3E%20X_%7Bn%2B1%7D%7CX_n%20%20%20%5Ctag%202



鞅過程 (Martingale) 是從數(shù)學(xué)期望的角度來看隨機(jī)變量之間的關(guān)系的:

E(X_%7Bn%2B1%7D%7CX_n%2CX_%7Bn-1%7D%2C%5Ccdots%20%2CX_0)%20%3D%20X_n%20%20%5Ctag%203





例如:X1,X2,.... 是獨立同分布的隨機(jī)變量,滿足如下的分布:


X_i%3D%0A%0A%5Cbegin%7Bcases%7D%0A%0A%20%202%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B1%7D%7B3%7D%20%5C%5C%20%5C%5C%0A%0A%20%20%5Cfrac%7B1%7D%7B2%7D%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B2%7D%7B3%7D%0A%0A%5Cend%7Bcases%7D



令?Y_0%3D1

Y_k%3D%5Cprod_%7Bi%3D1%7D%5EK%20X_i

那么隨機(jī)過程 %5C%7BY_0%2CY_1%2CY_2%2C%5Ccdots%5C%7D? 就是一個鞅過程。


%5Cbegin%7Baligned%7D%0A%0AE%5BY_%7Bk%2B1%7D%7CY_k%2CY_%7Bk-1%7D%2C%5Ccdots%2CY_0%5D%20%0A%0A%26%3DE%5BX_%7Bk%2B1%7D%5Cprod_%7Bi%3D1%7D%5EK%20X_i%7CX_k%2CX_%7Bk-1%7D%2C%5Ccdots%2CX1%5D%20%20%5C%5C%0A%0A%26%3D%20%5Cprod_%7Bi%3D1%7D%5EK%20X_i%20E%5BX_%7Bk%2B1%7D%7CX_k%2CX_%7Bk-1%7D%2C%5Ccdots%2CX1%5D%20%5C%5C%20%5C%5C%0A%0A%26%3D%20Y_k%20E%5BX_%7Bk%2B1%7D%5D%20%5C%5C%20%5C%5C%0A%0A%26%3DY_k%0A%0A%5Cend%7Baligned%7D

上鞅過程

E(X_%7Bn%2B1%7D%7CX_n%2CX_%7Bn-1%7D%2C%5Ccdots%20%2CX_0)%20%5Cle%20X_n%20%20%5Ctag%204


上面鞅過程的例子中,如果隨機(jī)變量取值的概率有一點變化,則是上鞅過程:

X_i%3D%0A%0A%5Cbegin%7Bcases%7D%0A%0A%20%202%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B1%7D%7B4%7D%20%5C%5C%20%5C%5C%0A%0A%20%20%5Cfrac%7B1%7D%7B2%7D%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B3%7D%7B4%7D%0A%0A%5Cend%7Bcases%7D



下鞅過程

E(X_%7Bn%2B1%7D%7CX_n%2CX_%7Bn-1%7D%2C%5Ccdots%20%2CX_0)%20%5Cge%20X_n%20%20%5Ctag%205

同理,如果鞅過程的例子中,隨機(jī)變量的取值有一點變化,則是下鞅過程:

X_i%3D%0A%0A%5Cbegin%7Bcases%7D%0A%0A%20%202%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B5%7D%7B12%7D%20%5C%5C%20%20%5C%5C%0A%0A%20%20%5Cfrac%7B1%7D%7B2%7D%20%26%20with%20%5Cquad%20probability%5Cquad%20%5Cfrac%7B7%7D%7B12%7D%0A%0A%5Cend%7Bcases%7D


極化碼數(shù)學(xué)原理(三)-鞅過程 Martingale的評論 (共 條)

分享到微博請遵守國家法律
和硕县| 安吉县| 克什克腾旗| 叶城县| 阿鲁科尔沁旗| 绥芬河市| 新邵县| 邯郸市| 普宁市| 富锦市| 沂水县| 蛟河市| 丰台区| 韩城市| 江永县| 平阳县| 梅州市| 尤溪县| 武平县| 蚌埠市| 海安县| 闽侯县| 渝北区| 延寿县| 泊头市| 天全县| 镶黄旗| 汉源县| 留坝县| 鹤岗市| 佛学| 衡东县| 曲周县| 阳原县| 东安县| 临桂县| 中西区| 新干县| 沂水县| 松溪县| 湟源县|