五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Calculus] Curious Integral of Johann Bernoulli

2022-06-10 07:36 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)


【Problem】?

In 1697, the Swiss mathematician Johann Bernoulli?(1667 - 1748) discovered a very interesting result of integral calculus:

%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7Bx%5Ex%7D%20dx%20%3D%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bn%5En%7D.%20

Prove this interesting result!

Hints

(1) Begin by using the transformation %20%5Cfrac%7B1%7D%7Bx%5Ex%7D%20%3D%20%7Be%7D%5E%7B-x%20%5Cln%20x%7D .

(2) Remember the Taylor series expansion e%5Ex%20%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bx%5En%7D%7Bn!%7D.

【Solution】?

This integral is an improper integral with the indeterminate form 0%5E0. It is well known that %5Clim_%7Bx%20%5Crightarrow%200%7D%20x%5Ex%20%3D%201 and knowing this fact enables us to show that

%20%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7Bx%5Ex%7D%20dx%20%3D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Be%7D%5E%7B-x%20%5Cln%20x%7D%20dx.


Applying the Taylor series e%5Ex%20%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bx%5En%7D%7Bn!%7D gives


%5Cbegin%7Balign%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7Bx%5Ex%7D%20dx%20%26%3D%20%5Cint_%7B0%7D%5E%7B1%7D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B%7B(-x%20%5Cln%20x)%7D%5E%7Bn%7D%7D%7Bn!%7D%20dx%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bn!%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7B(-x%20%5Cln%20x)%7D%5E%7Bn%7D%20dx%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B%7B(-1)%7D%5E%7Bn%7D%7D%7Bn!%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20x%5En%20%7B%5Cln%7D%5E%7Bn%7D%20x%20%5C%3Bdx%20%5C%5C%0A%0A%5Cend%7Balign%7D%20


Now use the technique of integration by parts on the integral %5Cint_%7B0%7D%5E%7B1%7D%20x%5En%20%7B%5Cln%7D%5E%7Bn%7D%20x%20%5C%3Bdx. Let u%20%3D%20%7B%5Cln%7D%5E%7Bn%7D%20x, du%20%3D%20%5Cfrac%7Bn%7D%7Bx%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx, dv%20%3D%20x%5En%20dx%20, and v%20%3D%20%5Cfrac%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D.?


Subsequently,

%20%5Cbegin%7Balign%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20x%5En%20%7B%5Cln%7D%5E%7Bn%7D%20x%20%5C%3Bdx%20%26%3D%20%5Cleft(%5Cfrac%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D%7B%5Cln%7D%5E%7Bn%7D%20x%20%5Cright)_%7B0%7D%5E%7B1%7D%20-%20%5Cfrac%7Br%7D%7Br%2B1%7D%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7Bx%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx%20%5C%5C%0A%0A%26%3D%20-%5Cfrac%7Bn%7D%7Bn%2B1%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx%20%5C%5C%0A%0A%5Cend%7Balign%7D%20


Continuing the integration by parts scheme to the integral %20%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx gives the pattern:

%5Cbegin%7Balign%7D%20%0A%0A%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx%20%26%3D%20-%5Cfrac%7Bn-1%7D%7Bn%2B1%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-2%7D%20x%20%5C%3Bdx%20%5C%5C%0A%0A%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-2%7D%20x%20%5C%3Bdx%20%26%3D%20-%5Cfrac%7Bn-2%7D%7Bn%2B1%7D%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-3%7D%20x%20%5C%3Bdx%2C%20%5C%3Betc.%5C%5C%0A%0A%5Cend%7Balign%7D



Thus,

%5Cbegin%7Balign%7D%20%0A%0A%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-1%7D%20x%20%5C%3Bdx%20%26%3D%20-%5Cfrac%7Bn-1%7D%7Bn%2B1%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-2%7D%20x%20%5C%3Bdx%20%5C%5C%0A%0A%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-2%7D%20x%20%5C%3Bdx%20%26%3D%20-%5Cfrac%7Bn-2%7D%7Bn%2B1%7D%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20%7B%5Cln%7D%5E%7Bn-3%7D%20x%20%5C%3Bdx%2C%20%5C%3Betc.%5C%5C%0A%0A%5Cend%7Balign%7D


Consequently,

%5Cbegin%7Balign%7D%0A%0A%5Cint_%7B0%7D%5E%7B1%7D%20x%5En%20%7B%5Cln%7D%5E%7Bn%7D%20x%20%5C%3Bdx%20%26%3D%20%5Cfrac%7B%7B(-1)%7D%5E%7Bn%7Dn!%7D%7B%7B(n%2B1)%7D%5E%7Bn%7D%7D%20%5Cint_%7B0%7D%5E%7B1%7D%20%7Bx%7D%5E%7Bn%7D%20dx%20%5C%5C%0A%0A%26%3D%20%5Cfrac%7B%7B(-1)%7D%5E%7Bn%7Dn!%7D%7B%7B(n%2B1)%7D%5E%7Bn%2B1%7D%7D%20%0A%0A%5Cend%7Balign%7D


Therefore,

%5Cint_%7B0%7D%5E%7B1%7D%20%5Cfrac%7B1%7D%7Bx%5Ex%7D%20dx%20%3D%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7B1%7D%7Bn%5En%7D.%20


[Calculus] Curious Integral of Johann Bernoulli的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
黄陵县| 永靖县| 施秉县| 明水县| 普陀区| 湛江市| 东城区| 遵义县| 廉江市| 密云县| 房产| 潞西市| 三亚市| 卫辉市| 永春县| 桂东县| 广州市| 黔江区| 蒲江县| 颍上县| 余干县| 应城市| 公主岭市| 永春县| 河源市| 金门县| 台州市| 无锡市| 鞍山市| 米易县| 越西县| 崇明县| 嵊泗县| 崇义县| 太仆寺旗| 苍溪县| 化隆| 德清县| 乌什县| 泰和县| 芷江|