五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

【種花家務(wù)·代數(shù)】1-4-04公式分解法『數(shù)理化自學(xué)叢書6677版』

2023-09-27 16:15 作者:山嵓  | 我要投稿

【閱前提示】本篇出自『數(shù)理化自學(xué)叢書6677版』,此版叢書是“數(shù)理化自學(xué)叢書編委會”于1963-1966年陸續(xù)出版,并于1977年正式再版的基礎(chǔ)自學(xué)教材,本系列叢書共包含17本,層次大致相當(dāng)于如今的初高中水平,其最大特點就是可用于“自學(xué)”。當(dāng)然由于本書是大半個世紀(jì)前的教材,很多概念已經(jīng)與如今迥異,因此不建議零基礎(chǔ)學(xué)生直接拿來自學(xué)。不過這套叢書卻很適合像我這樣已接受過基礎(chǔ)教育但卻很不扎實的學(xué)酥重新自修以查漏補缺。另外,黑字是教材原文,彩字是我寫的注解。

【山話嵓語】我在原有“自學(xué)叢書”系列17冊的基礎(chǔ)上又添加了1冊八五人教中學(xué)甲種本《微積分初步》,原因有二:一則,我是雙魚座,有一定程度的偶雙癥,但“自學(xué)叢書”系列中代數(shù)4冊、幾何5冊實在令我刺撓,因此就需要加入一本代數(shù),使兩邊能夠?qū)ε计胶?;二則,我認(rèn)為《微積分初步》這本書對“準(zhǔn)大學(xué)生”很重要,以我的慘痛教訓(xùn)為例,大一高數(shù)第一堂課,我是直接蒙圈,學(xué)了個寂寞。另外大學(xué)物理的前置條件是必須有基礎(chǔ)微積分知識,因此我所讀院校的大學(xué)物理課是推遲開課;而比較生猛的大學(xué)則是直接開課,然后在緒論課中猛灌基礎(chǔ)高數(shù)(例如田光善舒幼生老師的力學(xué)課)。我選擇在“自學(xué)叢書”17本的基礎(chǔ)上添加這本《微積分初步》,就是希望小伙伴升大學(xué)前可以看看,不至于像我當(dāng)年那樣被高數(shù)打了個措手不及。

第四章因式分解?

§4-4公式分解法

1、平方差的因式分解公式

【01】在§4-1里我們曾經(jīng)看到多項式 a2-b2 可以分解成兩個因式,就是?a2-b2=(a+b)(a-b)……(1)? 。

【02】事實上,這里我們是反過來應(yīng)用了兩數(shù)和與差的積的公式。

【03】我們可以把(1)作為一個公式,利用它來分解由一個數(shù)的平方減去另一個數(shù)的平方所構(gòu)成的多項式的因式。平方差的因式分解公式

????????a2-b2=(a+b)(a-b)(因式分解公式1)。

例1.分解因式:(1) a2-x2;(2)?x2-y2? 。

【分析】可以直接應(yīng)用公式,只要把公式里的 a,b 用有關(guān)字母代進去就可以了,公式里的 a,在(1)內(nèi)是 a;在(2)內(nèi)是 x;公式里的 b,在(1)內(nèi)是x,在(2)內(nèi)是 y? 。

【解】(1)?a2-x2=(a+x)(a-x);(2)?x2-y2=(x+y)(x-y)? 。

例2.分解因式:(1) 4a2-9b2;(2) a?-4b?? 。

【分析】4a2=(2a)2,9b2=(3b)2,以 2a 和 3b 替代公式里的 a 和 b 就可以了。

【解】

(1) 4a2-9b2=(2a)2-(3b)2=(2a+3b)(2a-3b)? 。

(2) a?-4b?=(a2)2-(2b2)2=(a2+2b2)(a2-2b2)? 。

例3.分解因式:(1)16a1?-25b2x?;(2)36a?x1o-9b?y?? 。

【解】

(1)16a1?-25b2x?=(4a?)2-(5bx2)2=(4a?+5bx2)(4a?-5bx2);

(2)36a?x1o-9b?y?=(6a2x?)2-(3b3y?)2=(6a2x?+3b3y?)(6a2x?-3b3y?)? 。

例4.分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A(1)%26%5C%3B(x-y)%5E2-z%5E2%3B%5C%5C%0A(2)%26%5C%3B4(x-y)%5E2-(a-b)%5E2%3B%5C%5C%0A(3)%26%5C%3B4(a%2Bb)%5E2-9(a-b)%5E2%3B%5C%5C%0A(4)%26%5C%3B(ax%2Bby)%5E2-1.%0A%5Cend%7Baligned%7D

【分析】這里每一個多項式都是平方差的形式,所以都可以利用上面的公式1? 。例如,在(1)里,x-y 就相當(dāng)于公式里的 a;在(2)里,2(x-y) 相當(dāng)于公式里的 a;在(4)里,1 相當(dāng)于公式里的 b? 。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26(1)(x-y)%5E%7B2%7D-z%5E%7B2%7D%5C%5C%0A%26%3D%5Cleft%5B(x-y)%2Bz%5Cright%5D%5Cleft%5B(x-y)-z%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(x-y%2Bz%5Cright)%5Cleft(x-y-z%5Cright)%3B%20%5C%5C%0A%26(2)4(x-y)%5E%7B2%7D-(a-b)%5E%7B2%7D%5C%5C%0A%26%3D%5B2(x-y)%5D%5E%7B2%7D-(%5Cboldsymbol%7Ba%7D-b)%5E%7B2%7D%20%20%5C%5C%0A%26%3D%5Cleft%5B2(x-y)%2B(a-b)%5Cright%5D%5Cleft%5B2(x-y)-(a-b)%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(2x-2y%2Ba-b%5Cright)%5Cleft(2x-2y-a%2Bb%5Cright)%20%5C%5C%0A%26(3)4(a%2Bb)%5E%7B2%7D-9(a-b)%5E%7B2%7D%5C%5C%0A%26%3D%5B2(a%2Bb)%5D%5E%7B2%7D-%5B3(a-b)%5D%5E%7B2%7D%20%5C%5C%0A%26%3D2(a%2Bb)%2B3(a-b)2(a%2Bb)-3(a-b)%20%5C%5C%0A%26%3D(2a%2B2b%2B3a-3b)(2a%2B2b-3a%2B3b)%20%5C%5C%0A%26%3D(5a-b)%5Cleft(-a%2B5b%5Cright)%5C%5C%0A%26%3D(5a-b)%5Cleft(5b-a%5Cright)%3B%20%5C%5C%0A%26(4)(ax%2Bby)%5E%7B2%7D-1%5C%5C%0A%26%3D%5Cleft%5B(ax%2Bby)%2B1%5Cright%5D%5Cleft%5B(ax%2Bby)-1%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(ax%2Bby%2B1%5Cright)%5Cleft(ax%2Bby-1%5Cright).%0A%5Cend%7Baligned%7D

【注意】在第一步分解成因式時,不要省掉中括號,但以后要把這些括號內(nèi)盡量化簡,改用小括號。

習(xí)題4-4(1)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81%20a%5E2-9b%5E2.%5C%5C%0A%262%E3%80%819x%5E2-4y%5E2.%5C%5C%0A%263%E3%80%81%20a%5E4-4b%5E2.%5C%5C%0A%264%E3%80%81a%5E6-b%5E8.%5C%5C%0A%265%E3%80%8116x%5E%7B16%7D-y%5E4z%5E6.%5C%5C%0A%266%E3%80%8125a%5E2b%5E4c%5E%7B16%7D-1.%5C%5C%0A%267%E3%80%811-4x%5E2y%5E6.%5C%5C%0A%268%E3%80%81(a%2Bb)%5E2-9.%5C%5C%0A%269%E3%80%81(2x-3y)%5E2-4a%5E2.%5C%5C%0A%2610%E3%80%81(a%2B2b)%5E2-(x-3y)%5E2.%5C%5C%0A%2611%E3%80%814(a%2B2b)%5E2-25(a-b)%5E2.%5C%5C%0A%2612%E3%80%81a%5E2(a%2B2b)%5E2-9(x%2By)%5E2.%5C%5C%0A%2613%E3%80%81b%5E%7B2%7D-(a-b%2Bc)%5E%7B2%7D.%5C%5C%0A%2614%E3%80%81(a%2Bb)%5E%7B2%7D-4a%5E%7B2%7D.%5C%5C%0A%2615%E3%80%81(x-y%2Bz)%5E2-(2x-3y%2B4z)%5E2.%5C%5C%0A%2616%E3%80%814(x%2By%2Bz)%5E2-9(x-y-z)%5E2.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%269%E3%80%81(2x-3y%2B2a)(2x-3y-2a)%3B%20%5C%5C%0A%2610%E3%80%81(a%2B2b%2Bx-3y)(a%2B2b-x%2B3y)%3B%5C%5C%0A%2611%E3%80%813(7a-b)(3b-a)%20%5C%5C%0A%2612%E3%80%81(a%5E%7B2%7D%2B2ab%2B3x%2B3y)(a%5E%7B2%7D%2B2ab-3x-3y)%3B%5C%5C%0A%2613%E3%80%81(a%2Bc)(2b-a-c)%20%20%5C%5C%0A%0A%2614%E3%80%81(3a%2Bb)(b-a)%3B%5C%5C%0A%2615%E3%80%81(3x-4y%2B5z)(-x%2B2y-3z)%3B%20%5C%5C%0A%2616%E3%80%81(5x-y-z)(-x%2B5y%2B5z).%0A%5Cend%7Baligned%7D

例5.分解因式:(1) a?-b?;(2)?a?-9b?;(3)?a?-81b?;(4)?a1?-b1?? 。

【解】

(1) a?-b?=(a2)2-(b2)2=(a2+b2)(a2-b2)=(a2+b2)(a+b)(a-b)? 。

【說明】a2-b2 還可以應(yīng)用公式來分解,要繼續(xù)分解到不能分解為止。但 a2+b2 不能再分解,就把這個因式照抄下來,不要漏掉。

(2) a?-9b?=(a2)2-(3b2)2=(a2+3b2)(a2-3b2)? 。

【說明】a2-3b2 不能再分解了,因為 3 不能化成一個有理數(shù)的平方的形式。〖山注||? 到無理數(shù)領(lǐng)域后可以繼續(xù)分解為%5Ccolor%7Bblue%7D%7B%5Cscriptsize(a-%5Csqrt%7B3%7D%20b)(a%2B%5Csqrt%7B3%7D%20b)%7D

%5Csmall%5Cbegin%7Baligned%7D%0A%26%5Cleft(3%5Cright)%5C%3Ba%5E%7B8%7D-81b%5E%7B8%7D%5C%5C%0A%26%20%3D(%5Cboldsymbol%7Ba%7D%5E%7B4%7D)%5E%7B2%7D-(9b%5E%7B4%7D)%5E%7B2%7D%5C%5C%0A%26%3D(a%5E%7B4%7D%2B9b%5E%7B4%7D)(a%5E%7B4%7D-9b%5E%7B4%7D)%20%20%5C%5C%0A%26%3D(a%5E4%2B9b%5E4)(a%5E2)%5E2-(3b%5E2)%5E2%20%5C%5C%0A%26%3D(a%5E4%2B9b%5E4)%5Cleft%5B%5Cleft(a%5E2%2B3b%5E2%5Cright)%5Cleft(a%5E2-3b%5E2%5Cright)%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(a%5E4%2B9b%5E4%5Cright)%5Cleft(a%5E2%2B3b%5E2%5Cright)%5Cleft(a%5E2-3b%5E2%5Cright).%5C%5C%0A%26(4)%5C%3Ba%5E%7B16%7D-b%5E%7B16%7D%5C%5C%0A%26%20%3D(a%5E8)%5E2-(b%5E8)%5E2%5C%5C%0A%26%3D(a%5E8%2Bb%5E8)(a%5E8-b%5E8)%20%20%5C%5C%0A%26%3D(a%5E%7B8%7D%2Bb%5E%7B8%7D)%5Cleft%5B(a%5E%7B4%7D)%5E%7B2%7D-(b%5E%7B4%7D)%5E%7B2%7D%5Cright%5D%20%5C%5C%0A%26%3D(a%5E%7B8%7D%2Bb%5E%7B8%7D)(a%5E%7B4%7D%2Bb%5E%7B4%7D)(a%5E%7B4%7D-b%5E%7B4%7D)%20%5C%5C%0A%26%3D(a%5E8%2Bb%5E8)%5Cleft(a%5E4%2Bb%5E4%5Cright)%5Cleft%5B(a%5E2)%5E2-(b%5E2)%5E2%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(a%5E%5Ctext%7Bs%7D%2Bb%5E%5Ctextbf%7Bs%7D%5Cright)%5Cleft(a%5E4%2Bb%5E4%5Cright)%5Cleft(a%5E2%2Bb%5E2%5Cright)%5Cleft(a%5E2-b%5E2%5Cright)%20%5C%5C%0A%26%3D%5Cleft(a%5E8%2Bb%5E8%5Cright)%5Cleft(a%5E4%2Bb%5E4%5Cright)%5Cleft(a%5E2%2Bb%5E2%5Cright)%5Cleft(a%2Bb%5Cright)%5Cleft(a-b%5Cright).%0A%5Cend%7Baligned%7D

例6.分解因式:(1) a3-ab2;(2) a?-9a2b2;(3) a2-b2+a-b;(4) 5(a2-b2)-a+b? 。

【解】

(1)先提出公因式 a,再應(yīng)用平方差公式,得 a3-ab2=a(a2-b2)=a(a+b)(a-b)? 。

(2)先提出公因式 a2,得 a?-9a2b2=a2(a2-9b2)=a2[a2-(3b)2]=a2(a+3b)(a-3b)? 。

(3)分成兩組,第一組應(yīng)用平方差公式,再提取公因式 (a-b),得 a2-b2+a-b=(a+b)(a-b)+(a-b)=(a-b)(a+b+1)? 。

【注意】如果把 a2-b2+a-b 變成 a2+a-b2-b=a(a+1)-b(b+1),就沒有公因式,不能分解下去,達不到因式分解的要求。遇到這種情況,要換一種分組方法再試。

(4) 5(a2-b2)-a+b=5(a+b)(a-b)-(a-b)=(a-b)[5(a+b)-1]=(a-b)(5a+5b-1)? 。

習(xí)題4-4(2)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81a%5E4-x%5E4y%5E4.%5C%5C%0A%262%E3%80%81a%5E8b%5E8-1%5C%5C%0A%263%E3%80%81a%5E4-16.%5C%5C%0A%264%E3%80%8116a%5E4b%5E3-c%5E8.%5C%5C%0A%265%E3%80%81a%5E9-ab%5E2.%5C%5C%0A%266%E3%80%81a%5E2b%5E3-4a%5E2b.%5C%5C%0A%267%E3%80%81x%5E2-y%5E2%2Bx-y.%5C%5C%0A%268%E3%80%81x%5E2-y%5E2-x-y.%5C%5C%0A%269%E3%80%81x%5E2-y%5E2%2Bx%2By.%5C%5C%0A%2610%E3%80%81x%5E2-y%5E2-x%2By.%5C%5C%0A%2611%E3%80%81a%5E2-4b%5E2-a-2b.%5C%5C%0A%2612%E3%80%81a%5E2-4b%5E2-2a%2B4b.%5C%5C%0A%2613%E3%80%81a%5E3-4ab%5E2-a-2b.%5C%5C%0A%2614%E3%80%815x%5E2-5y%5E2%2Bx%2By.%5C%5C%0A%2615%E3%80%813x%5E2-3y%5E2-x-y.%5C%5C%0A%2616%E3%80%812x%5E2-2y%5E2-x%2By.%5C%5C%0A%2617%E3%80%81a%5E2%2Ba-b%5E2-b.%5C%5C%0A%2618%E3%80%81%20a%5E2%2Ba-b%5E2%2Bb.%5C%5C%0A%2619%E3%80%81a%5E3-ab%5E2%2Ba-b.%5C%5C%0A%2620%E3%80%81%20a%5E3-ab%5E2-a%5E2-ab.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81(a%5E2%2Bx%5E2y%5E2)(a%2Bxy)(a-xy)%3B%20%5C%5C%0A%262%E3%80%81(a%5E4b%5E4%2B1)(a%5E2b%5E2%2B1)(ab%2B1)(ab-1)%3B%5C%5C%0A%263%E3%80%81(a%5E2%2B4)(a%2B2)(a-2)%3B%5C%5C%0A%264%E3%80%81(4a%5E%7B2%7Db%5E%7B4%7D%2Bc%5E%7B4%7D)(2ab%5E%7B2%7D%2Bc%5E%7B2%7D)(2ab%5E%7B2%7D-c%5E%7B2%7D)%3B%5C%5C%0A%265%E3%80%81a(a%5E%7B4%7D%2Bb)(a%5E%7B4%7D-b)%3B%20%5C%5C%0A%266%E3%80%81a%5E2b(b%2B2)(b-2)%3B%5C%5C%0A%267%E3%80%81(x-y)(x%2By%2B1)%3B%5C%5C%0A%268%E3%80%81(x%2By)(x-y%5Ccdot%20%20%5C%5C%0A%269%E3%80%81(x%2By)(x-y%2B1)%3B%5C%5C%0A%2610%E3%80%81(x-y)(x%2By-1)%3B%20%5C%5C%0A%2611%E3%80%81(a%2B2b)(a-2b-1)%3B%5C%5C%0A%2612%E3%80%81(a-2b)(a%2B2b-2)%20%5C%5C%0A%2613%E3%80%81(a%2B2b)(a%5E2-2ab-1)%3B%5C%5C%0A%2614%E3%80%81(x%2By)(5x-5y%2B1)%3B%20%5C%5C%0A%2615%E3%80%81(x%2By)(3x-3y-1)%3B%5C%5C%0A%2616%E3%80%81(x-y)(2x%2B2y-1)%3B%20%5C%5C%0A%2617%E3%80%81(a-b)(a%2Bb%2B1)%3B%5C%5C%0A%2618%E3%80%81(a%2Bb)(a-b%2B1)%3B%20%5C%5C%0A%2619%E3%80%81(a-b)(a%5E2%2Bab%2B1)%3B%5C%5C%0A%2620%E3%80%81a(a%2Bb)(a-b-1).%0A%5Cend%7Baligned%7D

2、完全平方的因式分解公式

【04】我們計算兩數(shù)和或差的平方時可以應(yīng)用下面的公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2? 。

【05】反過來就得到完全平方的因式分解公式

????????a2+2ab+b2=(a+b)2(因式分解公式2),

????????a2-2ab+b2=(a-b)2(因式分解公式3)。

【注】因為 a2+2ab+b2 和 a2-2ab+b2 可以分別化成兩個數(shù)的和或者兩個數(shù)的差的平方,我們把它們叫做完全平方式

例7.分解因式:(1) x2+2x+1;(2) x2-6ax+9a2;(3) 4a2-12ab+9b2;(4) a?+2a2b3+b?? 。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26(1)%5C%3Bx%5E%7B2%7D%2B2x%2B1%3Dx%5E%7B2%7D%2B2%C2%B7x%C2%B71%2B1%5E%7B2%7D%3D(x%2B1)%5E%7B2%7D%3B%20%20%5C%5C%0A%26(2)%5C%3Bx%5E%7B2%7D-6ax%2B9a%5E%7B2%7D%3Dx%5E%7B2%7D-2%C2%B7%20x%C2%B73a%2B(3a)%5E%7B2%7D%3D(x-3a)%5E%7B2%7D%3B%20%20%5C%5C%0A%26(3)%5C%3B4a%5E%7B2%7D-12ab%2B9b%5E%7B2%7D%3D(2a)%5E%7B2%7D-2%C2%B7(2a)(3b)%2B(3b)%5E%7B2%7D%20%20%3D(2a-3b)%5E2%3B%20%5C%5C%0A%26(4)%5C%3Ba%5E4%2B2a%5E2b%5E3%2Bb%5E6%3D(a%5E2)%5E2%2B2%C2%B7(a%5E2)(b%5E3)%2B(b%5E3)%5E2%20%3D(a%5E2%2Bb%5E3)%5E2.%0A%5Cend%7Baligned%7D

【說明】要確定能不能應(yīng)用公式2或3來分解,先要看兩個平方項,確定公式里的 a 與 b 在這里各是什么,然后看中間一項是不是相當(dāng)于+2ab 或-2ab? 。如果是的,就可以分解成為兩數(shù)和或差的平方形式了。在初學(xué)的時候,中間這個過渡性步驟,不要省掉。

例8.看下列各式的空格處各應(yīng)該填什么,才能夠應(yīng)用上面的分解因式公式2或3? 。

%5Csmall%5Cbegin%7Baligned%7D%26(1)%5C%3B%20x%5E2%2B%5CBox%20xy%2B25y%5E2%3B%5C%5C%26(2)%5C%3B100x%5E2-%5CBox%20xy%2B49y%5E2%3B%5C%5C%26(3)%5C%3B9x%5E2-36x%2B%5CBox%3B%5C%5C%26(4)%5C%3B%5Cfrac14x%5E2y%5E2-%5CBox%2Bz%5E4%3B%5C%5C%26(5)%5C%3B36a%5E4-60a%5E2b%5E2x%2B%5CBox%3B%5C%5C%26(6)%5C%3B49a%5E2-%5CBox%2B16b%5E6.%5Cend%7Baligned%7D

【解】

(1)這里 a 是 x,b 是 5y,∴ 2ab 應(yīng)該是 10xy,空白處是 10;

(2)這里 a 是10x,b 是 7y,∴ 2ab 應(yīng)該是 140xy,空白處是 140;

(3)這里 a 是 3x,從 36x 里分出 2·3x,得 2·3x·6,∴ b 是 6,空白處應(yīng)該是 36;

(4)這里 a 是%5Cscriptsize%5Cfrac12xy%20,b 是 z2,空白處應(yīng)為%5Cscriptsize2%C2%B7%5Cfrac12xy%20%C2%B7z%5E2%3Dxyz%5E2

(5)這里 a 是 6a2,從 60a2b2x 里分出 2·6a2,得 2·6a2·5b2x,∴ b 是 5b2x,空白處應(yīng)該是 25b?x2;

(6)這里 a 是 7a,b 是 4b3,空白處應(yīng)為 2·7a·4b3=56ab3? 。

例9.分解因式:

%5Csmall%5Cbegin%7Baligned%7D%26(1)%5C%3B%20a%5E3-8a%5E2%2B16a%3B%5C%5C%26(3)%5C%3B%20x%5E4a%5E2%2B2a%5E3x%5E2%2Ba%5E2%3B%5Cend%7Baligned%7D%5Cquad%5Cbegin%7Baligned%7D%26(2)%5C%3B9(a%2Bb)%5E2%2B6(a%2Bb)%2B1%3B%5C%5C%26(4)%5C%3B(x%2By)%5E2-4(x%2By)b%5E2%2B4b%5E4.%5Cend%7Baligned%7D

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26(1)%5C%3Ba%5E%7B3%7D-8a%5E%7B2%7D%2B16a%3Da(a%5E%7B3%7D-8a%2B16)%3Da(a-4)%5E%7B2%7D%3B%20%20%5C%5C%0A%26(2)%5C%3B9(a%2Bb)%5E%7B2%7D%2B6(a%2Bb)%2B1%20%5C%5C%0A%26%3D%5B3(a%2Bb)%5D%5E2%2B2%C2%B73(a%2Bb)1%2B1%5E2%20%5C%5C%0A%26%3D%5B3(a%2Bb)%2B1%5D%5E2%3D(3a%2B3b%2B1)%5E2%3B%20%5C%5C%0A%26(3)%5C%3B%20x%5E4a%5E2%2B2a%5E2x%5E2%2Ba%5E2%3Da%5E2(x%5E4%2B2x%5E2%2B1)%20%5C%5C%0A%26%3Da%5E2%5B(x%5E2)%5E2%2B2%C2%B7%20x%5E2%C2%B71%2B1%5E2%5D%3Da%5E2(x%5E2%2B1)%5E2%3B%20%5C%5C%0A%26(4)%5C%3B(x%2By)%5E%7B2%7D-4%5Cleft(x%2By%5Cright)b%5E%7B2%7D%2B4b%5E%7B4%7D%20%20%5C%5C%0A%26%3D(x%2By)%5E2-2(x%2By)%C2%B7(2b%5E2)%5Cbecause(2b%5E2)%5C%5C%0A%26%3D%5B(x%2By)-2b%5E2%5D%5E2%3D(x%2By-2b%5E2)%5E2.%0A%5Cend%7Baligned%7D

習(xí)題4-4(3)

分解因式(1~10):

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81x%5E%7B2%7D-12x%2B36.%5C%5C%0A%262%E3%80%81x%5E2%2B8x%2B16.%20%5C%5C%0A%263%E3%80%814a%5E2-20ab%2B25b%5E2.%20%5C%5C%0A%264%E3%80%819x%5E%7B2%7D%2B12xy%2B4y%5E%7B2%7D%E3%80%82%20%5C%5C%0A%265%E3%80%81y%5E2-50xy%2B625x%5E2.%20%5C%5C%0A%266%E3%80%81x%5E2-38x%2B361.%20%5C%5C%0A%267%E3%80%819x%5E2y%5E4%2B30xy%5E2z%2B25z%5E2%20%5C%5C%0A%268%E3%80%81x%5E%7B6%7D%2B24x%5E%7B3%7D%2B144%20%5C%5C%0A%269%E3%80%811-6ab%5E%7B8%7D%2B9a%5E%7B2%7Db%5E%7B6%7D.%20%5C%5C%0A%2610%E3%80%8149a%5E2-112ab%5E2%2B64b%5E4.%20%0A%5Cend%7Baligned%7D

在下列各題的空白處填上適當(dāng)?shù)臄?shù)字或字母,使這個式子是一個完全平方式(11~14):

%5Csmall%5Cbegin%7Baligned%7D%0A%2611%E3%80%81%5Csquare%20a%5E2-6a%2B1.%5C%5C%0A%2612%E3%80%814a%5E2%2B%5CBox%20ab%2B25b%5E2.%5C%5C%0A%2613%E3%80%8164x%5E4%2B%5Csquare%2B9y%5E2.%5C%5C%0A%2614%E3%80%8149a%5E2b%5E2c%5E2-28abcd%5E2%2B%5CBox.%0A%5Cend%7Baligned%7D

分解因式(15~20):

%5Csmall%5Cbegin%7Baligned%7D%0A%2615%E3%80%81a%5E3-4a%5E2b%2B4ab%5E2.%5C%5C%0A%2616%E3%80%81a%5E4x%5E2%2B4a%5E3x%5E2y%2B4x%5E2y%5E2.%5C%5C%0A%2617%E3%80%8116a%5E2b%5E4-8ab%5E3c%5E2%2Bb%5E2c%5E4.%5C%5C%0A%2618%E3%80%819(a-b)%5E2%2B6(a-b)%2B1.%5C%5C%0A%2619%E3%80%81(a%2B2b)%5E2-10(a%2B2b)%2B25.%5C%5C%0A%2620%E3%80%814x%5E2(a%2Bb)%5E2-12xy(a%2Bb)%5E2%2B9y%5E2(a%2Bb)%5E2.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81(x-6)%5E2%3B%5C%5C%0A%262%E3%80%81(x%2B4)%5E2%3B%5C%5C%0A%263%E3%80%81(2a-5b)%5E2%3B%5C%5C%0A%264%E3%80%81(3x%2B2y)%5E2%3B%5C%5C%0A%265%E3%80%81(y-25x)%5E2%3B%5C%5C%0A%266%E3%80%81(x-19)%5E2%3B%5C%5C%0A%267%E3%80%81(3xy%5E2%2B5z)%5E2%3B%5C%5C%0A%268%E3%80%81(x%5E3%2B12)%5E2%3B%5C%5C%0A%269%E3%80%81(1-3ab%5E3)%5E2%3B%5C%5C%0A%2610%E3%80%81(7a-8b%5E2)%5E2%3B%5C%5C%0A%2611%E3%80%819%3B%5C%5C%0A%2612%E3%80%8120%3B%5C%5C%0A%2613%E3%80%8148x%5E2y%3B%5C%5C%0A%2614%E3%80%814d%5E4%3B%5C%5C%0A%2615%E3%80%81a(a-2b)%5E4%3B%5C%5C%0A%2616%E3%80%81x%5E2(a%5E2%2B2y)%5E2%3B%5C%5C%0A%2617%E3%80%81b%5E2(4ab-c%5E2)%5E2%3B%5C%5C%0A%2618%E3%80%81(3a-3b%2B1)%5E2%3B%5C%5C%0A%2619%E3%80%81(a%2B2c-5)%5E2%3B%5C%5C%0A%2620%E3%80%81(a%2Bb)%5E2(2x-3y)%5E2.%0A%5Cend%7Baligned%7D

例10.分解因式:x2-a2+2ab-b2? 。

【分析】這里不能直接應(yīng)用公式,但是把后面三項括成一組,先應(yīng)用公式3使 a2-2ab+b2 變成 (a-b)2,就可以應(yīng)用平方差公式再進行因式分解。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26x%5E%7B2%7D-a%5E%7B2%7D%2B2ab-b%5E%7B2%7D%5C%5C%0A%26%20%3Dx%5E2-(a%5E2-2ab%2Bb%5E2)%20%20%5C%5C%0A%26%20%3Dx%5E2-(a-b)%5E2%20%20%5C%5C%0A%26%20%3D%5Cleft%5Bx%2B(a-b)%5Cright%5D%5Cleft%5Bx-(a-b)%5Cright%5D%20%20%5C%5C%0A%26%3D%5Cleft(x%2Ba-b%5Cright)%5Cleft(x-a%2Bb%5Cright).%0A%5Cend%7Baligned%7D

【注】如果把前面兩項與后面兩項各分成一組,那未 x2-a2+2ab-b2=(x2-a2)+(2ab-b2)=(x+a)(x-a)+b(2a-b),這樣就不能再分解下去,達不到因式分解的目的。

例11.分解因式:4x2+12xy+9y2-16z2? 。

【解】把前面三項括成一組,得

%5Csmall%5Cbegin%7Baligned%7D%0A%264x%5E%7B2%7D%2B12xy%2B9y%5E%7B2%7D-16z%5E%7B2%7D%5C%5C%0A%26%20%3D(4x%5E2%2B12xy%2B9y%5E2)-16z%5E2%20%20%5C%5C%0A%26%3D(2x%2B3y)%5E%7B2%7D-(4z)%5E%7B2%7D%20%5C%5C%0A%26%20%3D%5Cleft%5B%5Cleft(2x%2B3y%5Cright)%2B4z%5Cright%5D%5Cleft%5B%5Cleft(2x%2B3y%5Cright)-4z%5Cright%5D%20%20%5C%5C%0A%26%20%3D%5Cleft(2x%2B3y%2B4z%5Cright)%5Cleft(2x%2B3y-4z%5Cright).%0A%5Cend%7Baligned%7D

例12.分解因式:2ab-a2-b2+1? 。

【解】

%5Csmall%5Cbegin%7Baligned%7D%262ab-a%5E2-b%5E2%2B1%3D1-(a%5E2-2ab%2Bb%5E2)%5C%5C%26%3D1-(a-b)%5E2%3D%5B1%2B(a-b)%5D%5B1-(a-b)%5D%5C%5C%26%3D(1%2Ba-b)%5Cleft(1-a%2Bb%5Cright).%5Cend%7Baligned%7D

例13.分解因式:x2-2xy+y2-a2-2ab-b2? 。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26x%5E%7B2%7D-2xy%2By%5E%7B2%7D-a%5E%7B2%7D-2ab-b%5E%7B2%7D%20%20%5C%5C%0A%26%3D(x-y)%5E2-(a%5E2%2B2ab%2Bb%5E2)%20%5C%5C%0A%26%3D(x-y)%5E2-(a%2Bb)%5E2%20%5C%5C%0A%26%3D%5Cleft%5B(x-y)%2B(a%2Bb)%5Cright%5D%5Cleft%5B(x-y)-(a%2Bb)%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(x-y%2Ba%2Bb%5Cright)%5Cleft(x-y-a-b%5Cright).%0A%5Cend%7Baligned%7D

例14.分解因式:a2-4ab+4b2+6a-12b+9? 。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26a%5E2%20-4ab%2B4b%5E%7B2%7D%2B6a-12b%2B9%20%20%5C%5C%0A%26%3D(a-2b)%5E2%2B2%C2%B73%C2%B7(a-2b)%2B9%20%5C%5C%0A%26%3D%5Cleft%5B(a-2b)%2B3%5Cright%5D%5E2%3D(a-2b%2B3)%5E2.%0A%5Cend%7Baligned%7D

習(xí)題4-4(4)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81x%5E2%2B2xy%2By%5E2-9a%5E2.%5C%5C%0A%262%E3%80%814x%5E2-a%5E2-6a-9.%5C%5C%0A%263%E3%80%81x%5E2%2B4ax%2B4a%5E2-b%5E2.%5C%5C%0A%264%E3%80%819a%5E2-x%5E2%2B4x-4.%5C%5C%0A%265%E3%80%811-x%5E2%2B2xy-y%5E2.%5C%5C%0A%266%E3%80%81a%5E4-x%5E2%2B4ax-4a%5E2.%5C%5C%0A%267%E3%80%81%20a%5E2-b%5E2-x%5E2%2By%5E2-2ay%2B2bx.%5C%5C%0A%268%E3%80%81%20a%5E2%2B2ab%2Bb%5E2-2a-2b%2B1.%5C%5C%0A%269%E3%80%813a%5E2-6ab%2B3b%5E2-5a%2B5b.%5C%5C%0A%2610%E3%80%81%20a%5E2-4ab%2B4b%5E2-a%5E3%2B4ab%5E2.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81(x%2By%2B3a)(x%2By-3a)%3B%5C%5C%0A%262%E3%80%81(2x%2Ba%2B3)(2x-a-3)%3B%5C%5C%0A%263%E3%80%81(x%2B2a%2Bb)(x%2B2a-b)%3B%20%5C%5C%0A%264%E3%80%81(3a%2Bx-2)(3a-x%2B2)%3B%5C%5C%0A%265%E3%80%81(1%2Bx-y)(1-x%2By)%3B%20%5C%5C%0A%266%E3%80%81(a%5E%7B2%7D%2Bx-2a)(a%5E%7B2%7D-x%2B2a)%3B%5C%5C%0A%267%E3%80%81(a-y%2Bb%20-x)(a-y-b%2Bx)%3B%5C%5C%0A%268%E3%80%81(a%2Bb-1)%5E%7B2%7D%3B%5C%5C%0A%269%E3%80%81(a-b)(3a-3b-5)%3B%20%20%5C%5C%0A%2610%E3%80%81(a-2b)(a-2b-a%5E%7B2%7D-2ab).%0A%5Cend%7Baligned%7D

3、立方和或立方差的因式分解法

【06】從乘法公式:(a+b)(a2-ab+b2)=a3+b3 及 (a-b)(a2+ab+b2)=a3-b3,反過來就得到立方和或立方差的因式分解公式

????????a3+b3=(a+b)(a2-ab+b2)(因式分解公式4),

????????a3-b3=(a-b)(a2+ab+b2)(因式分解公式5)。

例15.分解因式:(1) a3+8b3;(2) 27a3-1;(3) a?-b?;(4) 8x?+27y12? 。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26(1)%5C%3B%20a%5E3%2B8b%5E3%5C%5C%0A%26%3Da%5E3%2B(2b)%5E3%5C%5C%0A%26%3D(a%2B2b)%5Cleft%5Ba%5E2-a%C2%B7(2b)%2B(2b)%5E2%5Cright%5D%5C%5C%0A%26%3D(a%2B2b)%C2%B7(a%5E2-2ab%2B4b%5E2)%3B%5C%5C%0A%26(2)%5C%3B27a%5E3-1%5C%5C%0A%26%3D(3a)%5E3-1%5C%5C%26%3D(3a-1)%5Cleft%5B(3a)%5E2%2B8a%C2%B71%2B1%5E4%5Cright%5D%5C%5C%0A%26%3D(3a-1)%5Cleft(9a%5E2%2B3a%2B1%5Cright)%3B%5C%5C%0A%26(3)%5C%3B%20a%5E6-b%5E9%5C%5C%0A%26%3D(a%5E2)%5E3-(b%5E3)%5E3%5C%5C%0A%26%3D(a%5E3-b%5E3)%5Cleft%5B(a%5E2)%5E2%2B(a%5E2)%5Cleft(b%5E3%5Cright)%2B(b%5E3)%5E2%5Cright%5D%5C%5C%0A%26%3D(a%5E3-b%5E3)%5Cleft(a%5E4%2Ba%5E2b%5E3%2Bb%5E6%5Cright)%3B%5C%5C%0A%26(4)%5C%3B8x%5E6%2B27y%5E%7B12%7D%5C%5C%0A%26%3D(2x%5E2)%5E3%2B(3y%5E4)%5E3%5C%5C%0A%26%3D(2x%5E3%2B3y%5E4)%5Cleft%5B(2x%5E2)%5E2-(2x%5E2)(3y%5E4)%2B(3y%5E4)%5E2%5Cright%5D%5C%5C%0A%26%3D(2x%5E2%2B3y%5E4)%5Cleft(4x%5E4-6x%5E2y%5E4%2B9y%5E8%5Cright).%0A%5Cend%7Baligned%7D

【注意】切勿把 a3+b3 分解成為 (a+b)3,把 a3-b3?分解成為 (a-b)3? 。

習(xí)題4-4(5)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81a%5E3-125b%5E3.%5C%5C%0A%262%E3%80%818x%5E3%2B27.%5C%5C%0A%263%E3%80%81x%5E6%2By%5E9.%5C%5C%0A%264%E3%80%81x%5E6%2By%5E6.%5C%5C%0A%265%E3%80%81a%5E%7B12%7D%2Bb%5E%7B12%7D.%5C%5C%0A%266%E3%80%8164a%5E3-1.%5C%5C%0A%267%E3%80%81%5Cfrac18x%5E3-%5Cfrac1%7B27%7Dy%5E3.%5C%5C%0A%268%E3%80%81(x%2By)%5E3%2B8.%5C%5C%0A%269%E3%80%81343m%5E3-125n%5E6.%5C%5C%0A%2610%E3%80%811-8(a%2Bb)%5E3.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%265%E3%80%81(a%5E4%2Bb%5E4)(a%5E8-a%5E4b%5E4%2Bb%5E8)%3B%20%5C%5C%0A%266%E3%80%81(4a-1)(16a%5E2%2B4a%2B1)%3B%20%5C%5C%0A%267%E3%80%81%5Cleft(%5Cfrac12x-%5Cfrac13y%5Cright)%5Cbiggl(%5Cfrac14x%5E2%2B%5Cfrac16xy%2B%5Cfrac19y%5E2%5Cbiggr)%3B%20%5C%5C%0A%268%E3%80%81(x%2By%2B2)(x%5E2%2B2xy%2By%5E2-2x-2y%2B4)%3B%20%5C%5C%0A%269%E3%80%81(7m-5n%5E2)(49m%5E2%2B35mn%5E2%2B25n%5E4)%3B%20%5C%5C%0A%2610%E3%80%81(1-2a-2b)(1%2B2a%2B2b%2B4a%5E%7B2%7D%2B8ab%2B4b%5E%7B2%7D).%0A%5Cend%7Baligned%7D

例16.分解因式:x?-y?? 。

【解】先應(yīng)用平方差公式,而后再應(yīng)用公式4和5,得?

x?-y?=(x3)2-(y3)2=(x3+y3)(x3-y3)=(x+y)(x2-xy+y2)(x-y)(x2+xy+y2)? 。

【注】如果先應(yīng)用立方差公式,那末

x?-y?=(x2)3-(y2)3=(x2-y2)[(x2)2+x2y2+(y2)2]=(x+y)(x-y)(x?+x2y2+y?)? 。

下一步要把 x?+x2y2+y? 再進行分解,不太容易。實際上,x?+x2y2+y? 可以這樣分解:

x?+x2y2+y?=x?+x2y2+y?+x2y2-x2y2=x?+2x2y2+y?-x2y2=(x2+y2)2-(xy)2=(x2+y2+xy)(x2+y2-xy)=(x2+xy+y2)(x2-xy+y2),這里要加上一個 x2y2 再減去一個?x2y2,比較復(fù)雜了。以后如果遇到平方差公式與立方差公式都可以應(yīng)用時,總以先用平方差公式比較妥當(dāng)。

例17.分解因式:x3+x2+x-y3-y2-y? 。

【分析】先根據(jù)加法交換律與結(jié)合律把六項分成三組,第一組用立方差公式分解,第二組用平方差公式分解,這樣可以有一個二項公因式 x-y? 。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26x%5E%7B3%7D%20%2Bx%5E%7B2%7D%2Bx-y%5E%7B3%7D-y%5E%7B2%7D-y%20%20%5C%5C%0A%26%3D(x%5E3-y%5E3)%2B(x%5E2-y%5E2)%2B(x-y)%20%5C%5C%0A%26%3D(x-y)%5Cleft(x%5E2%2Bxy%2By%5E2%5Cright)%2B(x%2By)%5Cleft(x-y%5Cright)%2B(x-y)%20%5C%5C%0A%26%3D(x-y)%5Cleft%5B(x%5E2%2Bxy%2By%5E2)%2B(x%2By)%2B1%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(x-y%5Cright)%5Cleft(x%5E2%2Bxy%2By%5E2%2Bx%2By%2B1%5Cright).%0A%5Cend%7Baligned%7D

【注意】如果把原式直接分成有?x 的與有 y 的兩組,那末

x3+x2+x-y3-y2-y=x(x2+x+1)-y(y2+y+1),這樣就不能達到分解因式的目的。

習(xí)題4-4(6)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81a%5E%7B6%7D-64b%5E%7B6%7D%5C%5C%0A%26%202%E3%80%81a%5E%7B12%7D-b%5E%7B12%7D.%20%20%5C%5C%0A%263%E3%80%81x%5E%7B3%7D%2B6x%2By%5E%7B3%7D%2B6y%5C%5C%0A%26%204%E3%80%81x%5E%7B3%7D-y%5E%7B3%7D-x%5E%7B2%7D%2B2xy-y%5E%7B2%7D.%20%20%5C%5C%0A%265%E3%80%81%20x%5E3-x%5E2-x-y%5E3%2By%5E2%2By%5C%5C%0A%26%206%E3%80%81a%5E3-a%5E2-a%2Bb-b%5E2%2B2ab-b%5E3.%20%20%5C%5C%0A%267%E3%80%81a%5E3%2Ba%5E2%2Bb%5E3%2Bb%5E2%2B2ab.%5C%5C%0A%26%208%E3%80%81a%5E%7B3%7D%2Ba%5E%7B2%7D%2Bb%5E%7B3%7D-b%5E%7B2%7D%2Ba%2Bb.%20%20%5C%5C%0A%269%E3%80%81a%5E%7B3%7D%2B8b%5E%7B3%7D%2B2a%2B4b.%5C%5C%0A%26%2010%E3%80%81a%5E%7B6%7D%2Ba%5E%7B2%7D%2Bb%5E%7B6%7D%2Bb%5E%7B2%7D%20%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81(a%2B2b)(a%5E2-2ab%2B4b%5E2)(a-2b)(a%5E2%2B2ab%2B4b%5E2)%3B%5C%5C%0A%262%E3%80%81(a%5E2%2Bb%5E2)(a%5E4-a%5E2b%5E2%2Bb%5E4)(a%2Bb)(a%5E2-ab%2Bb%5E2)(a-b)(a%5E2%2Bab%2Bb%5E2)%3B%5C%5C%0A%263%E3%80%81(x%2By)(x%5E2-xy%2By%5E2%2B6)%3B%5C%5C%0A%264%E3%80%81(x-y)(x%5E2%2Bxy%2By%5E2-x%2By)%3B%5C%5C%0A%265%E3%80%81(x-y)(x%5E2%2Bxy%2By%5E2-x-y-1)%3B%5C%5C%0A%266%E3%80%81(a-b)(a%5E2%2Bab%2Bb%5E2-a%2Bb-1)%3B%5C%5C%0A%267%E3%80%81(a%2Bb)(a%5E2-ab%2Bb%5E2%2Ba%2Bb)%3B%5C%5C%0A%268%E3%80%81(a%2Bb)(a%5E2-ab%2Bb%5E2%2Ba-b%2B1)%3B%5C%5C%0A%269%E3%80%81(a%2B2b)(a%5E2-2ab%2B4b%5E2%2B2)%3B%5C%5C%0A%2610%E3%80%81(a%5E2%2Bb%5E2)(a%5E4-a%5E2b%5E2%2Bb%5E4%2B1).%0A%5Cend%7Baligned%7D

4、完全立方的因式分解法

【07】從乘法公式:(a+b)3=a3+3a2b+3ab2+b3 及?(a-b)3=a3-3a2b+3ab2-b3,反過來可得完全立方的因式分解公式

????????a3+3a2b+3ab2+b3=(a+b)3(因式分解公式6),

????????a3-3a2b+3ab2-b3=(a-b)3(因式分解公式7)。

例18.分解因式:a?-3a?b+3a2b2-b3? 。

【解】

%5Csmall%5Cbegin%7Baligned%7D%26a%5E6-3a%5E4b%2B3a%5E2b%5E2-b%5E3%5C%5C%26%3D(a%5E2)%5E3-3%5Cleft(a%5E2%5Cright)%5E2b%2B3%5Cleft(a%5E2%5Cright)b%5E2-b%5E3%5C%5C%26%3D(a%5E2-b)%5E3.%5Cend%7Baligned%7D

例19.分解因式:a3+6a2b+12ab2+8b3? 。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26a%5E3%2B6a%5E2b%2B12ab%5E2%2B8b%5E3%5C%5C%0A%26%3Da%5E3%2B3%C2%B7a%5E2(2b)%2B3%C2%B7a(2b)%5E2%2B(2b)%5E3%5C%5C%0A%26%3D(a%2B2b)%5E3.%0A%5Cend%7Baligned%7D

【說明】要應(yīng)用這兩個公式,可先看兩個立方項,確定公式里的 a 與 b 各是什么,然后看中間兩項是否剛剛是 3a2b 和 3ab2,再看符號是否對頭。一定要完全合適,才能應(yīng)用公式。

習(xí)題4-4(7)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%818a%5E%7B3%7D-12a%5E%7B2%7Db%2B6ab%5E%7B2%7D-b%5E%7B3%7D.%5C%5C%0A%262%E3%80%8127x%5E%7B3%7D%2B54x%5E%7B2%7Dy%2B36xy%5E%7B2%7D%2B8y%5E%7B3%7D.%5C%5C%0A%263%E3%80%8127x%5E3-108x%5E2y%2B144xy%5E2-64y%5E3.%5C%5C%0A%264%E3%80%811%2B12x%5E2y%5E2%2B48x%5E4y%5E4%2B64x%5E6y%5E6.%5C%5C%0A%265%E3%80%81x%5E6-6x%5E4y%2B12x%5E2y%5E2-8y%5E3.%5C%5C%0A%266%E3%80%8127x%5E3-9x%5E2y%2Bxy%5E2-%5Cfrac1%7B27%7Dy%5E3.%5C%5C%0A%267%E3%80%81a%5E4-3a%5E3%2B3a%5E2-a.%5C%5C%0A%268%E3%80%811-3(x-y)%2B3(x-y)%5E2-(x-y)%5E3.%5C%5C%0A%269%E3%80%81x%5E6-3x%5E4y%5E2%2B3x%5E2y%5E4-y%5E6.%5C%5C%0A%2610%E3%80%811-12a%5E2b%5E2%2B48a%5E4b%5E4-64a%5E5b%5E8.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81(2a-b)%5E3%3B%5C%5C%0A%262%E3%80%81(3x%2B2y)%5E3%3B%5C%5C%0A%263%E3%80%81(3x-4y)%5E3%3B%5C%5C%0A%264%E3%80%81(1%2B4x%5E2y%5E2)%5E3%3B%5C%5C%0A%265%E3%80%81(x%5E2-2y)%5E3%3B%5C%5C%0A%266%E3%80%81(3x-%5Cfrac13y)%5E3%3B%5C%5C%0A%267%E3%80%81%20a(a-1)%5E3%3B%5C%5C%0A%268%E3%80%81(1-x%2By)%5E3%3B%5C%5C%0A%269%E3%80%81(x%2By)%5E3(x-y)%5E3%3B%5C%5C%0A%2610%E3%80%81(1%2B2ab)%5E3(1-2ab)%5E3.%0A%5Cend%7Baligned%7D

【種花家務(wù)·代數(shù)】1-4-04公式分解法『數(shù)理化自學(xué)叢書6677版』的評論 (共 條)

分享到微博請遵守國家法律
达日县| 盐亭县| 仪征市| 澳门| 蓝山县| 湘潭市| 茂名市| 大冶市| 会昌县| 新乡县| 望江县| 光山县| 玉溪市| 中牟县| 和林格尔县| 凉城县| 宁夏| 集贤县| 高安市| 洪湖市| 辉南县| 高陵县| 砀山县| 延寿县| 新巴尔虎右旗| 郸城县| 静海县| 绥化市| 塘沽区| 微山县| 永昌县| 福鼎市| 萝北县| 东港市| 岳阳市| 乌鲁木齐县| 玉树县| 图木舒克市| 女性| 厦门市| 河间市|