五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Jensen零點(diǎn)公式

2022-08-05 19:45 作者:子瞻Louis  | 我要投稿

考慮一個(gè)?%7Cz%7C%5Cle%20R?內(nèi)全純的函數(shù) F(z) ,?記它在?%7Cz%7C%5Cle%20r 內(nèi)的零點(diǎn)個(gè)數(shù)為 n(r)?(算上零點(diǎn)的重?cái)?shù)),則根據(jù)經(jīng)典的輻角定理,可得:

n(r)%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_%7B%7Cz%7C%3Dr%7D%5Cfrac%7BF'%7D%7BF%7D(z)%5Cmathrm%20dz%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cfrac%7BF'%7D%7BF%7D(re%5E%7Bi%5Ctheta%7D)re%5E%7Bi%5Ctheta%7D%5Cmathrm%20d%5Ctheta

將它除以r后從0到R積分,由于左側(cè)是實(shí)數(shù),所以先對(duì)右側(cè)取實(shí)部,

%5Cbegin%7Baligned%7D%5Cint_%7B0%7D%5ER%5Cfrac%7Bn(r)%7Dr%5Cmathrm%20dr%26%3D%5Cfrac1%7B2%5Cpi%7D%5CRe%5Cint_0%5ER%5Cint_0%5E%7B2%5Cpi%7D%5Cfrac%7BF'%7D%7BF%7D(re%5E%7Bi%5Ctheta%7D)e%5E%7Bi%5Ctheta%7D%5Cmathrm%20d%5Ctheta%5Cmathrm%20dr%5C%5C%26%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cln%7CF(Re%5E%7Bi%5Ctheta%7D)%7C%5Cmathrm%20d%5Ctheta-%5Cln%7CF(0)%7C%5Cend%7Baligned%7D

然鵝對(duì)r的積分過程,r會(huì)取遍所有零點(diǎn)的模,我們要驗(yàn)證取到這些r時(shí)并不會(huì)對(duì)積分結(jié)果造成影響:取?F?在?%7Cz%7C%5Cle%20R?內(nèi)的所有零點(diǎn)的模,并將他們從小到大排列:

?0%3Dr_0%3Cr_1%3C%5Cdots%3Cr_n%5Cle%20R%3Dr_%7Bn%2B1%7D?

我們打算證明對(duì)每個(gè)?0%5Cle%20i%5Cle%20n

%5Clim_%7B%5Cepsilon%5Cto0%5E%2B%7D%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7BF((1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%7BF((1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D0

設(shè)?z_1%2C%5Cdots%2Cz_m?是?F(z)?在圓?%7Cz%7C%3Dr_i?上的所有零點(diǎn)(多重零點(diǎn)按重?cái)?shù)計(jì)算),那么它就可以被分解為

F(z)%3DG(z)%5Cprod_%7Bj%3D1%7D%5Em(z-z_j)

其中 G 是一個(gè)在該圓上沒有零點(diǎn)的全純函數(shù),由此有

%5Cln%7CF(re%5E%7Bi%5Ctheta%7D)%7C%3D%5Csum_%7Bj%3D1%7D%5Em%5Cln%7Cre%5E%7Bi%5Ctheta%7D-z_j%7C%2B%5Cln%7CG(re%5E%7Bi%5Ctheta%7D)%7C

取?r%3D(1%2B%5Cepsilon)r_i%2Cr%3D(1-%5Cepsilon)r_i?并積分后相減,得

%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7BF((1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%7BF((1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D%5Csum_%7Bj%3D1%7D%5Em%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%7B(1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%5Cright%7C%5Cmathrm%20d%5Ctheta

因?yàn)?z_j?模長為?r_i?,所以對(duì)每個(gè)?j ,有

%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%7B(1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%7B(1-%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%5Cright%7C%5Cmathrm%20d%5Ctheta

又由于

%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%7B(1-%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%5Cright%7C%5E2%3D%5Cfrac%7B%5Cepsilon%5E2%2B4(1%2B%5Cepsilon)%5Csin%5E2%5Cfrac12%5Ctheta%7D%7B%5Cepsilon%5E2%2B4(1-%5Cepsilon)%5Csin%5E2%5Cfrac12%5Ctheta%7D%3D1%2B%5Cmathcal%20O(%5Cepsilon)

所以確實(shí)有

%5Clim_%7B%5Cepsilon%5Cto0%5E%2B%7D%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7BF((1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%7BF((1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D0

這也就證明了以下定理:

(Jensen零點(diǎn)公式)對(duì)?%7Cz%7C%5Cle%20R?內(nèi)全純的函數(shù)?F(z)?,以?n(r)?表示它在?%7Cz%7C%5Cle%20r?內(nèi)的零點(diǎn)個(gè)數(shù)(算上零點(diǎn)的重?cái)?shù)),則

  • %5Cint_0%5ER%5Cfrac%7Bn(r)%7Dr%5Cmathrm%20dr%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cln%7CF(Re%5E%7Bi%5Ctheta%7D)%7C%5Cmathrm%20d%5Ctheta-%5Cln%7CF(0)%7C

將右側(cè)的積分用分部積分可得

%5Cint_0%5ER%5Cfrac%7Bn(r)%7Dr%5Cmathrm%20dr%3Dn(R)%5Clog%20R-%5Cint_0%5ER%5Clog%20r%5Cmathrm%20dn(r)

設(shè)?z_1%2C%5Cdots%2Cz_%7Bn(R)%7D?為?F?在?%7Cz%7C%5Cle%20R?內(nèi)的所有零點(diǎn),則有

%5Cint_0%5ER%5Clog%20r%5Cmathrm%20dn(r)%3D%5Csum_%7Bi%3D1%7D%5E%7Bn(R)%7D%5Clog%20%7Cz_i%7C

由此便可得Jensen公式最常見的一種形式:

%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cln%7CF(Re%5E%7Bi%5Ctheta%7D)%7C%5Cmathrm%20d%5Ctheta%3D%5Cln%7CF(0)%7C%2B%5Clog%5Cprod_%7Bi%3D1%7D%5E%7Bn(R)%7D%5Cleft%7C%5Cfrac%7BR%7D%7Bz_i%7D%5Cright%7C

Jensen零點(diǎn)公式的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
贵南县| 颍上县| 东至县| 湖南省| 苍梧县| 阿坝县| 聂荣县| 南召县| 漾濞| 赤壁市| 新蔡县| 呼和浩特市| 民勤县| 光泽县| 西充县| 盱眙县| 自治县| 桐柏县| 临桂县| 砀山县| 合水县| 孟村| 会泽县| 平定县| 天长市| 突泉县| 陇南市| 永清县| 永州市| 敦化市| 洱源县| 龙泉市| 顺义区| 大同市| 台湾省| 伊宁县| 乐山市| 新安县| 青阳县| 合山市| 泉州市|