五月天青色头像情侣网名,国产亚洲av片在线观看18女人,黑人巨茎大战俄罗斯美女,扒下她的小内裤打屁股

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

數(shù)論中的求和公式

2021-12-04 20:30 作者:子瞻Louis  | 我要投稿

在數(shù)論中,我們常常遇到類似%5Csum%20u(n)v(n)的和式子,其中u(x)是一階可導(dǎo)的實(shí)值或復(fù)值函數(shù),v(n)是數(shù)論函數(shù),本章將介紹分析中研究此類和式的一些方法

Abel求和公式(分部求和法)

看到它的另一個(gè)名字可能就有同學(xué)會(huì)想到微積分中的分部積分法

沒錯(cuò),他們其實(shí)是有聯(lián)系的,我們先來回顧一下分部積分法

設(shè)u(x)%2Cv(x)是[a,b]上連續(xù)可積的函數(shù),對(duì)它們的乘積微分

%5Cmathrm%20du(x)v(x)%3D%5Clim_%7Bh%5Cto0%7D%20u(x%2Bh)v(x%2Bh)-u(x)v(x)%20

%3D%5Clim_%7Bh%5Cto0%7D%20u(x%2Bh)v(x%2Bh)-u(x%2Bh)v(x)%2Bu(x%2Bh)v(x)-u(x)v(x)%20

%3D%5Clim_%7Bh%5Cto0%7D%20u(x%2Bh)%5Cmathrm%20dv(x)%2Bv(x)%5Cmathrm%20du(x)%20%3Du(x)%5Cmathrm%20dv(x)%2Bv(x)%5Cmathrm%20du(x)

對(duì)兩邊同時(shí)從a到b積分

%5Cint_%7Ba%7D%5E%7Bb%7D%5Cmathrm%20du(x)v(x)%3D%5Cint_%7Ba%7D%5E%7Bb%7Du(x)%5Cmathrm%20dv(x)%2B%5Cint_%7Ba%7D%5E%7Bb%7Dv(x)%5Cmathrm%20du(x)

%5Cint_%7Ba%7D%5E%7Bb%7Du(x)%5Cmathrm%20dv(x)%3Du(b)v(b)-u(a)v(a)-%5Cint_%7Ba%7D%5E%7Bb%7Dv(x)%5Cmathrm%20du(x)

這就是著名的分部積分法,其實(shí)它本身也是一種分部求和法

為了得到Abel求和公式,我們先給出一個(gè)定義

  • f(n)為一數(shù)論函數(shù),%5CDelta%20f(n)%3Df(n)-f(n-1)稱為f(n)差分

我們不難推出它的一些性質(zhì)

  • %5Csum_%7Ba%3Cn%5Cleq%20b%7D%5CDelta%20f(n)%3Df(%5Bb%5D)-f(%5Ba%5D)

  • %5CDelta%20u(n)v(n)%3Du(n)%5CDelta%20v(n)-v(n-1)%5CDelta%20u(n)

其中%5Bx%5D取整函數(shù),表示不大于x的最大整數(shù)

是不是覺得和微積分很像呢?那就對(duì)了!

我們?cè)诘诙€(gè)性質(zhì)中從a到b求和,利用第一個(gè)性質(zhì)得到

%5Cbegin%7Baligned%7D%5Csum_%7Ba%3C%20n%5Cleq%20b%7D%5CDelta%20u(n)v(n)%26%3Du(%5Bb%5D)v(%5Bb%5D)-u(%5Ba%5D)v(%5Ba%5D)%5C%5C%26%3D%5Csum_%7Ba%3C%20n%5Cleq%20b%7Du(n)%5CDelta%20v(n)%2B%5Csum_%7Ba%3C%20n%5Cleq%20b%7Dv(n-1)%5CDelta%20u(n)%5Cend%7Baligned%7D

因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=u(x)" alt="u(x)">一階可導(dǎo),所以

%5CDelta%20u(n)%3Du(n)-u(n-1)%3D%5Cint_%7Bn-1%7D%5E%7Bn%7D%5Cmathrm%20du(x)

我們令v(x)%3Dv(%5Bx%5D)%2Cx%5Cin%20R,則

v(n-1)%5CDelta%20u(n)%3D%5Cint_%7Bn-1%7D%5E%7Bn%7Du(x)%5Cmathrm%20dv(x)

上式從a到b求和的過程中,積分區(qū)間各不相交且可以很好的合并起來,即

%5Csum_%7Ba%3C%20n%5Cleq%20b%7Dv(n-1)%5CDelta%20u(n)%3D%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20%20du(x)

于是,我們得到

u(%5Bb%5D)v(%5Bb%5D)-u(%5Ba%5D)v(%5Ba%5D)%3D%5Csum_%7Ba%3C%20n%5Cleq%20b%7Du(n)%5CDelta%20v(n)%2B%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)

%5Cimplies%20%5Csum_%7Ba%3C%20n%5Cleq%20b%7Du(n)%5CDelta%20v(n)%3Du(%5Bb%5D)v(%5Bb%5D)-u(%5Ba%5D)v(%5Ba%5D)-%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)

式中的取整符號(hào)讓它看起來不太美觀,身為強(qiáng)迫癥的我當(dāng)然不能忍了

于是我們繼續(xù)研究一下它

注意到

%5Cbegin%7Baligned%7D%5Cint_%7Ba%7D%5E%7Bb%7Dv(x)%5Cmathrm%20du(x)%26%3D%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)%2B%5Cleft(%5Cint_%7Ba%7D%5E%7B%5Ba%5D%7D%2B%5Cint_%7B%5Bb%5D%7D%5E%7Bb%7D%5Cright)v(x)%5Cmathrm%20du(x)%5C%5C%26%3D%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)%2Bv(%5Ba%5D)%5Cint_%7Ba%7D%5E%7B%5Ba%5D%7Ddv(x)%2Bv(%5Bb%5D)%5Cint_%7B%5Bb%5D%7D%5E%7Bb%7D%5Cmathrm%20dv(x)%5C%5C%26%3D%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)%2Bv(%5Ba%5D)u(%5Ba%5D)-v(a)u(a)%2Bv(b)u(b)-v(%5Bb%5D)u(%5Bb%5D)%5Cend%7Baligned%7D

%5CRightarrow%20%5Cint_%7B%5Ba%5D%7D%5E%7B%5Bb%5D%7Dv(x)%5Cmathrm%20du(x)%3D%5Cint_%7Ba%7D%5E%7Bb%7Dv(x)%5Cmathrm%20du(x)-v(%5Ba%5D)u(%5Ba%5D)%2Bv(%5Bb%5D)u(%5Bb%5D)%2Bv(b)u(b)-v(a)u(b)

代入上式得到

%5Csum_%7Ba%3C%20n%5Cleq%20b%7Du(n)%5CDelta%20v(n)%3Du(b)v(b)-u(a)v(a)-%5Cint_%7Ba%7D%5E%7Bb%7Dv(x)%5Cmathrm%20du(x)

不難看出它與微積分中的分部積分法只區(qū)別在v(n)是一數(shù)論函數(shù)且v(x)%3Dv(%5Bx%5D)

到這里其實(shí)它與真正的分部求和法已經(jīng)差不了多少了,但還是有點(diǎn)缺一點(diǎn)美觀,

而下面的這個(gè)就是“正宗貨”了

設(shè)f(x)為一[a,b]上一階可導(dǎo)的函數(shù),G(n)為一數(shù)論函數(shù)且G(x)%3DG(%5Bx%5D)%2CG(0)%3D0

g(n)%3D%5CDelta%20v(n),則v(x)%3D%5Csum_%7Bn%5Cleq%20x%7Dg(n)

由上面的結(jié)論,得到

  • %5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)g(n)%3Df(b)G(b)-f(a)G(a)-%5Cint_%7Ba%7D%5E%7Bb%7DG(x)f'(x)%5Cmathrm%20dx

這才得到了大名鼎鼎的Abel分部求和公式■

Euler-Maclaurin求和公式

為了偷懶我將它簡稱為E-M公式)

設(shè)f(x)連續(xù)可導(dǎo),由Abel求和公式出發(fā),

%5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)g(n)%3Df(b)G(b)-f(a)G(a)-%5Cint_%7Ba%7D%5E%7Bb%7DG(x)%5Cmathrm%20df(x)

不連續(xù)的G(x)有點(diǎn)礙眼,但并不妨礙我們對(duì)右式的積分用分部積分法

%5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)g(n)%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dG(x)

似乎變得奇怪起來了,但如果可以取得G(x)%3Dp(x)%2Bj(x),使p(x)是一階可導(dǎo)的

%5Cbegin%7Baligned%7D%5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)g(n)%26%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dp(x)%2B%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dj(x)%5C%5C%26%3D%5Cint_%7Ba%7D%5E%7Bb%7Dp'(x)f(x)%5Cmathrm%20dx%2Bf(b)j(b)-f(a)j(a)-%5Cint_%7Ba%7D%5E%7Bb%7Dj(x)f'(x)%5Cmathrm%20dx%5Cend%7Baligned%7D

若取g(n)%3D1,則G(x)%3D%5Bx%5D%3Dx-%5Cleft%5C%7Bx%5Cright%5C%7D,可得

%5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)dx-f(b)%5Cleft%5C%7Bb%5Cright%5C%7D%2Bf(a)%5Cleft%5C%7Ba%5Cright%5C%7D%2B%5Cint_%7Ba%7D%5E%7Bb%7D%5Cleft%5C%7Bx%5Cright%5C%7Df'(x)dx

更合適的是取G(x)%3Dx-%5Cfrac%7B1%7D%7B2%7D%2B%5Cleft(%5Cfrac%7B1%7D%7B2%7D-%5Cleft%5C%7Bx%5Cright%5C%7D%5Cright),

%5Crho%20(x)%3D%5Cfrac%7B1%7D%7B2%7D-%5Cleft%5C%7Bx%5Cright%5C%7D,則

  • %5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)%5Cmathrm%20dx%2Bf(b)%5Crho%20(b)-f(a)%5Crho(a)-%5Cint_%7Ba%7D%5E%7Bb%7D%5Crho(x)f'(x)%5Cmathrm%20dx

這就是最簡單形式的E-M求和公式

不難發(fā)現(xiàn)%5Crho%20(x)是周期為1的函數(shù),且%5Cint_%7B0%7D%5E%7B1%7D%5Crho(x)%5Cmathrm%20dx%3D0

設(shè)%5Csigma(x)%3D%5Cint_%7B0%7D%5E%7Bx%7D%5Crho(u)%5Cmathrm%20du,由積分中值定理,得

%5Cmathrm%20d%5Csigma(x)%3D%5Clim_%7Bh%5Cto0%7D%5Cint_%7Bx%7D%5E%7Bx%2Bh%7D%5Crho(u)%5Cmathrm%20du%3D%5Crho(x)%5Cmathrm%20dx

于是,

%5Cbegin%7Baligned%7D%5Cint_%7Ba%7D%5E%7Bb%7D%5Crho(x)f'(x)%5Cmathrm%20dx%26%3D%5Cint_%7Ba%7D%5E%7Bb%7Df'(x)%5Cmathrm%20d%5Csigma(x)%5C%5C%26%3Df'(b)%5Csigma(b)-f'(a)%5Csigma(a)-%5Cint_%7Ba%7D%5E%7Bb%7D%5Csigma(x)f''(x)%5Cmathrm%20dx%5Cend%7Baligned%7D

代入上面的式子,得

  • %5Cbegin%7Baligned%7D%5Csum_%7Ba%3C%20n%5Cleq%20b%7Df(n)%26%3D%5Cint_%7Ba%7D%5E%7Bb%7Df(x)dx%2Bf(b)%5Crho%20(b)-f(a)%5Crho(a)-f'(b)%5Csigma(b)%2Bf'(a)%5Csigma(a)%5C%5C%26%5Cquad%20-%5Cint_%7Ba%7D%5E%7Bb%7D%5Csigma(x)f''(x)dx%5Cend%7Baligned%7D

這樣我們又得到了E-M求和公式的一種形式

這一求和法在求漸進(jìn)公式和近似計(jì)算中十分有用,且若繼續(xù)推廣,能得到更精確的逼近

但實(shí)際運(yùn)用中常常只用到簡單的形式,因此本篇文章不作討論

Poison求和公式

為了方便,記e(x)%3De%5E%7B2%5Cpi%20ix%7D

設(shè)f(x)為R上連續(xù)且絕對(duì)可積的函數(shù)

考慮

g(x)%3Df(x%2BnT)%2Cx%5Cin(0%2CT)%2Cn%5Cin%20%5Cmathbb%7BZ%7D%2CT%EF%BC%9E0

易知它是周期為T的函數(shù),令

s(n)%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_%7B0%7D%5E%7BT%7Dg(x)e%5Cleft(-%5Cfrac%7Bnx%7DT%5Cright)dx

由我們對(duì)它的定義,有

s(k)%3D%5Cfrac1T%5Cint_%7B0%7D%5E%7BT%7Dg(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du%3D%5Cfrac1T%5Cint_%7BnT%7D%5E%7B(n%2B1)T%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du

注意到s(k)g(x)的Fourier展開中的Fourier系數(shù),則

%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7Ds(k)e%5Cleft(%5Cfrac%7Bkx%7DT%5Cright)%3Dg(x)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cleft(%5Cfrac1T%5Cint_%7BnT%7D%5E%7B(n%2B1)T%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du%5Cright)e%5Cleft(%5Cfrac%7Bkx%7DT%5Cright)

M%EF%BC%9EN為兩個(gè)整數(shù),根據(jù)積分區(qū)間可加性質(zhì):

%5Cint_%7Ba%7D%5E%7Bb%7Df(x)dx%2B%5Cint_%7Bb%7D%5E%7Bc%7Df(x)dx%3D%5Cint_%7Ba%7D%5E%7Bc%7Df(x)dx

對(duì)n從N累加到M-1,得到

%5Csum_%7Bn%3DN%7D%5E%7BM%7Df(x%2BnT)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cleft(%5Cfrac1T%5Cint_%7BNT%7D%5E%7BMT%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du%5Cright)e%5Cleft(%5Cfrac%7Bkx%7DT%5Cright)

此時(shí)令M%5Crightarrow%20-%5Cinfty%2CN%5Crightarrow%20%2B%5Cinfty,

則括號(hào)里的積分變?yōu)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du" alt="%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du">,

不難發(fā)現(xiàn)它就是f的Fourier變換,即

%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7Df(u)e%5Cleft(-%5Cfrac%7Bku%7DT%5Cright)du%3D%5Chat%20f%5Cleft(%5Cfrac%20kT%5Cright)

代入回原式里,就可以得到

  • %5Csum_%7Bn%3D-%5Cinfty%7D%5E%7B%5Cinfty%7Df(x%2BnT)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Cfrac1T%20%5Chat%7Bf%7D%5Cleft(%5Cfrac%20kT%5Cright)e%5E%7B2%5Cpi%20ikx%2FT%7D

這就是Poison求和公式了

它最常用的形式就是取x%3D0%2CT%3D1

  • %5Csum_%7Bn%3D-%5Cinfty%7D%5E%7B%5Cinfty%7Df(n)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%7B%5Cinfty%7D%5Chat%20f(k)


數(shù)論中的求和公式的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
白山市| 瑞丽市| 和林格尔县| 齐齐哈尔市| 镇宁| 蒲江县| 吉木乃县| 昌黎县| 德令哈市| 芜湖县| 海丰县| 安乡县| 常州市| 贵溪市| 万年县| 巴东县| 浦江县| 鄂伦春自治旗| 兴国县| 土默特右旗| 方城县| 环江| 花垣县| 门头沟区| 浮梁县| 新绛县| 信宜市| 格尔木市| 曲松县| 麻城市| 乡城县| 甘孜| 二连浩特市| 武冈市| 绵竹市| 同仁县| 河北区| 河西区| 景泰县| 商丘市| 萨嘎县|